Afficher la notice abrégée
| dc.rights.license |
CC BY |
eng |
| dc.contributor.author |
Trojovský, Pavel |
cze |
| dc.date.accessioned |
2025-12-05T09:04:45Z |
|
| dc.date.available |
2025-12-05T09:04:45Z |
|
| dc.date.issued |
2020 |
eng |
| dc.identifier.issn |
1687-1847 |
eng |
| dc.identifier.uri |
http://hdl.handle.net/20.500.12603/1025 |
|
| dc.description.abstract |
Let (Fn)n >= 0 be the Fibonacci sequence. The order of appearance z(n) of a positive integer n is defined as z(n):=min{k >= 1:n divide Fk}. In 2013, Marques proved that lim infn ->infinity z(n)/n=0. Let epsilon be a positive real number. In this paper, in particular, we generalized this Marques' result by proving that almost all positive integers satisfy z(n)/n < epsilon. |
eng |
| dc.format |
p. "Article Number: 270" |
eng |
| dc.language.iso |
eng |
eng |
| dc.publisher |
Springer |
eng |
| dc.relation.ispartof |
Advances in difference equations, volume 2020, issue: 1 |
eng |
| dc.subject |
Asymptotic |
eng |
| dc.subject |
Arithmetic functions |
eng |
| dc.subject |
Fibonacci sequence |
eng |
| dc.subject |
Order of appearance |
eng |
| dc.subject |
Natural density. |
eng |
| dc.title |
Some problems related to the growth of z(n) |
eng |
| dc.type |
article |
eng |
| dc.identifier.obd |
43876480 |
eng |
| dc.identifier.doi |
10.1186/s13662-020-02735-5 |
eng |
| dc.publicationstatus |
postprint |
eng |
| dc.peerreviewed |
yes |
eng |
| dc.source.url |
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5 |
cze |
| dc.relation.publisherversion |
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5 |
eng |
| dc.rights.access |
Open Access |
eng |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée