DSpace Repository

Some problems related to the growth of z(n)

Show simple item record

dc.rights.license CC BY eng
dc.contributor.author Trojovský, Pavel cze
dc.date.accessioned 2025-12-05T09:04:45Z
dc.date.available 2025-12-05T09:04:45Z
dc.date.issued 2020 eng
dc.identifier.issn 1687-1847 eng
dc.identifier.uri http://hdl.handle.net/20.500.12603/1025
dc.description.abstract Let (Fn)n >= 0 be the Fibonacci sequence. The order of appearance z(n) of a positive integer n is defined as z(n):=min{k >= 1:n divide Fk}. In 2013, Marques proved that lim infn ->infinity z(n)/n=0. Let epsilon be a positive real number. In this paper, in particular, we generalized this Marques' result by proving that almost all positive integers satisfy z(n)/n < epsilon. eng
dc.format p. &quot;Article Number: 270&quot; eng
dc.language.iso eng eng
dc.publisher Springer eng
dc.relation.ispartof Advances in difference equations, volume 2020, issue: 1 eng
dc.subject Asymptotic eng
dc.subject Arithmetic functions eng
dc.subject Fibonacci sequence eng
dc.subject Order of appearance eng
dc.subject Natural density. eng
dc.title Some problems related to the growth of z(n) eng
dc.type article eng
dc.identifier.obd 43876480 eng
dc.identifier.doi 10.1186/s13662-020-02735-5 eng
dc.publicationstatus postprint eng
dc.peerreviewed yes eng
dc.source.url https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5 cze
dc.relation.publisherversion https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5 eng
dc.rights.access Open Access eng


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account