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Abstract. Networking systems are becoming increasingly important in today's 

globalization conditions. Network systems show positive and negative effects 

and paradoxes. One of the paradoxes examined is Braess's paradox, which 

describes the situation when the addition of edges in the network can lead to a 

deterioration in the properties of the network system. The paper focuses on 

generalizing Braess's paradox. One way of generalizing is to consider multiple 

criteria. An example is analyzed when adding a zero-valued edge according to 

another criterion worsens the values of both criteria. The second way of 

exploration is the dynamism of Braess's paradox. Both of these generalizations 

lead to an even stronger versions of Braess's paradox than by the original 

problem. 
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1 Introduction 

Many of the current network systems are characterized by both the breadth and the 

complexity of network topology [2]. Overloading plays a growing role not only in 

transport networks but also in telecommunication networks. Complementarity becomes 

a decisive factor in information markets. Networks show positive effects. The product 

unit value increases with the expected number of units sold. Switching costs are also 

significant when switching to other services or switching to new technology. The 

decisions of the network users influence not only themselves, but also other participants 

in the size of profit and cost, timeliness of supply, environmental quality, etc. Paradox 

situations arise on the networks. Classical paradoxes include Braess's paradox. The 

paper focuses on generalizing it for multiple criteria and for its dynamic versions.  

2 Braess's Paradox 

Behavior of network participants may be non-cooperative. An example may be the 

behavior of users of transport or telecommunication networks, where optimization from 

individual users does not lead to optimization of the whole system. This situation is 



 

 

illustrated by the well-known Braess's paradox, when adding another connection by the 

same demand for service leads to an increase in costs for users [1]. 

We will analyze a concrete example. The original network in Fig. 1 is composed of 

four nodes 1, 2, 3, 4 and four edges h1, h2, h3, h4, the start and the end of the network 

consists of nodes 1 and 4. There are two paths between the start and end of the network 

C1 ={h1, h3} and C2 ={h2, h4}. Let's assume that the cost of individual edges depends on 

the size of the flows 

 n(h1) = 10 x1, n(h2) =  x2 + 50, n(h3) =  x3 + 50, n(h4) = 10 x4 (1) 

and the total required network flow X = 6. 

 

Fig. 1. Braess's paradox. 

In the case of optimization from a user's point of view, the equilibrium solution is given 

by the situation when all the paths between the start and end of the network have the 

same minimum costs and therefore users are not interested in changing flows on the 

path. The equilibrium solution is given by the flows on the edges 

 x*
1 = 3, x*

2 = 3, x*
3 = 3, x*

4 = 3 (2) 

and by the corresponding costs on the paths  

 n(C1) = 83, n(C2) = 83.   (3) 

After changing the network by adding the edge h5 between nodes 2 and 3 with the cost 

n(h5) = x5 + 10, the next path C3 ={h1, h5, h4} will be created and the equilibrium solution 

in the original network will no longer be equilibrium in this situation. The equilibrium 

is defined by the same cost for all paths. In our example, the equilibrium solution will 

send a flow size of 2 units on each of the three paths, and hence the flows on individual 

edges 

 x*
1 = 4, x*

2 = 2, x*
3 = 2, x*

4 = 4, x*
5 = 2 (4) 

and the corresponding costs on the paths  

 n(C1) = 92, n(C2) = 92, n(C3) = 92.  (5) 

Uveďme konkrétní ilustrační příklad: 
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The cost has increased for each network user from 83 to 92. This increase is also due 

to the fact that the edges h1 and h4 are shared by two paths and increase the flow and 

cost. Braess's paradox is triggered by the network topology as well as the behavior of 

the participants, which is aimed at optimizing from an individual user perspective. If a 

path is added between the start and the end of the network that does not share the edges 

with the original link, then Braess's paradox does not occur. 

3 Multi-Criteria Braess's Paradox  

Multi-criteria formulation can also be considered. The role of costs can be extended, 

for example, to the consideration of emissions associated with edge flows. Adding a 

zero-emission edge leads to an increase in total emissions without changing the total 

flow [3]. 

Consider an example from the original network in Fig. 1, with the same assignment. 

Suppose, moreover, that the emissions at individual edges are dependent on the size of 

the flows 

 e(h1) = 2 x1, e(h2) = x2, e(h3) = x3, e(h4) = 2 x4.  (6) 

For the total required network flow X = 6, the original equilibrium solution is given by 

the flows at the edges 

 x*
1 = 3, x*

2 = 3, x*
3 = 3, x*

4 = 3 (7) 

and total emissions are 

 E = 2(3) + 1(3) + 1(3) + 2(3) = 18.  (8) 

After changing the network by adding the edge h5 between nodes 2 and 3 with zero 

emissions, the equilibrium solution will be given by edge flows 

 x*
1 = 4, x*

2 = 2, x*
3 = 2, x*

4 = 4, x*
5 = 2  (9) 

and total emissions will increase 

 E = 2(4) + 1(2) + 1(2) + 2(4) = 20.  (10) 

Adding a new zero-emission edge will not only increase costs for all participants but 

also the amount of emissions generated. 

Our example demonstrated that adding a zero-valued edge for another criterion may 

worsen values for both criteria. General consideration of multiple criteria and the search 

for equilibrium solutions with multiple criteria will be the subject of further research. 

 



 

 

4 Dynamic Braess's Paradox  

It is possible to consider the dynamic version of Braess's paradox [4]. We will proceed 

from the situation described in Fig. 1 after the change that occurred by adding the edge 

h 5. Now, however, the total flow X(t) will depend on time. In our example,  

 X(t) = t, t 0,T  (11) 

and there will be time-dependent flows at each edge 

 x1(t),  x2(t),  x3(t),  x4(t),  x5(t)  (12) 

with costs that are function of time-dependent flows 

 n(h1) = 10 x1(t), n(h2) =  x2(t) + 50, n(h3) =  x3(t) + 50,  

 n(h4) = 10 x4(t), n(h5) =  x5(t) + 10, t 0,T . (13) 

Due to network topology and linear cost functions, this dynamic balance case is easy 

to solve. General cases can be solved using evolutionary variation inequalities. 

   There are 3 paths in the network C1 ={h1, h3}, C2 ={h2, h4} and C3 ={h1, h5, h4}, 3 

equilibrium solutions for the total flow t: 

 

1. Only the path C3 with the flow size t. Flows at each edge    

 x1(t) = t,  x2(t) = 0,  x3(t) = 0,  x4(t) = t,  x5(t) = t (14) 

with the cost of this path 

 n(C3) = 21 t + 10.  (15) 

2. Paths C1 and C2 with a flow of  
𝑡

2
  on each path. There are flows at each edge 

    x1(t) = 
𝑡

2
 ,  x2(t) = 

𝑡

2
 ,  x3(t) = 

𝑡

2
  ,  x4(t) = 

𝑡

2
 ,  x5(t) = 0 (16) 

with the cost of each path 

 n(C1) = n(C2) =  
11

2
 t + 50.  (17) 

3. Paths C1 and C2 with the flow of size  
11

13
 t  - 

40

13
 on each path and C3 path with 

the flow  
80

13
 - 

9

13
 t. Flows on individual edges     

 x1(t) =  
11

13
 t  + 

40

13
,  x2(t) = 

11

13
 t  - 

40

13
,   x3(t) = 

11

13
 t  - 

40

13
,  

 x4(t) = 
2

13
 t  + 

40

13
,   x5(t) =  

80

13
 - 

9

13
𝑡,  (18) 

with the cost of each path 



 

 

 n(C1) = n(C2) = n(C3) = 
31

13
 t  + 

1010

13
.   (19) 

By analyzing the dynamically expressed costs it is possible to divide the interval for the 

total flow t into three intervals: 

 

1. For 𝑡 ∈ [0,
80

31
] only path C3 is used, which uses the added new edge h5. 

2. For 𝑡 ∈ (
80

31
,

80

9
] all three paths are used, including the new path C3, and 

Braess's paradox is emerging. 

3. For 𝑡 ∈ (
80

9
, ∞) only old paths C1 and C2 are used and the added edge h5 is not 

used at all. 

 

The dynamic version of the problem has shown an even stronger version of Braess's 

paradox, for some values of the dynamic total flow Braess's paradox is emerging and 

for some values of the dynamic total flow even a new path will never be used. 

5 Conclusions 

Many of the current economic systems have network connections. These network 

systems show various interesting effects and paradoxes. Braess's paradox shows an 

interesting situation that arises by adding another connection in the network system 

leads to an increase in costs for users by the same demand for service. The paper 

analyzes the multi-criteria and dynamic versions of Braess's paradox. Analyzed 

generalizations show even stronger versions of Braess's paradox. The results of the 

analysis have implications for the practical solution of problems in network systems. 

These generalizations will be a topic for further research. 
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