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Abstract: Vehicle Routing Problem (VRP) consist in the problem of delivery of the items from 

depot to the other nods of the communication network. Nodes represent the recipients of the 

item delivery, items are transported by vehicles or any other means of transport. In a lot of 

applications of this problem, the requirements for the transport of items from depot come 

continually in time and they allow to delay the delivery. Therefore, there is no need to deliver 

this packet immediately at the time the requirement arrives. In this case (except for searching 

for the optimal routes) we need to decide which nodes will be in these routes and which not. 

The optimization will be related to the choice of nodes and minimization of routes containing 

these nodes. The objective function is the average length of the route to a unit of transported 

items. It is a linear-fractional function. In the article there are, except for the model with this 

objective function, suggested alternative methods including heuristic methods. Everything is 

illustrated on the numerical example. 
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1. Introduction 

At the standard VRP there is given a set of nodes, a matrix of distances and requirements 

on the transfer in nodes (Laporte, 1992; Braysy & Gendreau, 2005). The set of nodes might not 

be obligatory at some applications – some nodes can be omitted, if it is not effective according 

to the creating of the routes. This route can be then formulated as a VRP with the choice of 

nodes. Objective function representing total cost (or total length of all routes) doesn´t solve the 

problem, because the optimal solution doesn´t contain any non-obligatory nodes. Neither the 

objective function with the total amount of transport is not eligible, because all the nodes are 

included in the optimal solution. 

The problem was solved with a constraint that the requirements on the transport into the 

nodes were divided into the urgent requirements, which had to be realized immediately, and 

others, non-obligatory, which might not be in a solution if it caused a decrease in the efficiency 

of the solution (Pelikán & Jablonský, 2020; Pelikán, 2019). The goal was to minimize costs to a 

unit of transported items (further Ic). The model with this non-linear objective function was 

transformed by using the Charles-Cooper method into the linear model with binary variables. 

The condition for using the Charles-Cooper transformation is to have the positive denominator 

in the objective function for all the acceptable solutions (Barros, 1998; Martos, 1975). This can 

be achieved by the fact that every acceptable solution will contain at least one node (except for 

a depot). 

There will be suggested these three models in this article: 
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a) a model with obligatory and optional nodes; 

b) a model with given maximal limit of the efficiency index; 

c) a model with given number of nodes included in the solution. 

2. Mathematical Model of VRP with Obligatory and Optional Nodes 

At first, we introduce the mathematical model of the problem. 

 

Parameters of the model: 

n number of nodes, 

m number of optional nodes, nodes 2,3,…,m are optional nodes, nodes m+1,m+2,…,n are 

compulsory, node 1 is depot, 

dij distance between node i and node j, 

qi demand of node i, 

W capacity of vehicle. 

 

Variables of the model are: 

xij binary, equals 1 if a vehicle travels from node i to node j, 

uj variables in anti-cyclic constraints. 

 

The object function Ic (1) is ratio with denominator total amount of loads of all routes and 

numerator total length of all routes. Equation (2) ensures that compulsory nodes will be 

entered and its demand qj is covered. Equation (3) means condition: if vehicle enters a node 

it has to leave it. Anti-cyclic conditions are in (4). Inequality (5) assures that capacity of 

vehicles is not exceeded. 
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Nonlinear model is solved using the Charles-Cooper method (see Pelikán and 

Jablonský (2020)). 



The proposed mathematical model was verified on an illustrative example. Consider 11 

nodes where node 1 is a depot and m=6. Capacity of each vehicle is W=100. The requirements 

of the nodes are q = (0, 5, 20, 10, 20, 85, 65, 30, 20, 70, 30). The distance matrix D is in Table 1. 

Table 1. Distance matrix D 

0 13 6 55 93 164 166 168 169 241 212 

13 0 11 66 261 175 177 179 180 239 208 

6 11 0 60 97 168 171 173 174 239 209 

55 66 60 0 82 113 115 117 117 295 265 

93 261 97 82 0 113 115 117 118 333 302 

164 175 168 113 113 0 6 7 2 403 374 

166 177 171 115 115 6 0 8 7 406 376 

168 179 173 117 117 4 8 0 3 408 378 

169 180 174 117 118 3 7 3 0 409 379 

241 239 239 295 333 403 406 408 409 0 46 

212 208 209 265 302 374 376 378 379 46 0 

 

Optimal solution is: 

1. route 1-3-2-4-1 with transport volume 73 and length of the route 138. 

2. route 1-5-7-9-6-1 with transport volume 100 and length of the route 381. 

The total length of all route is 519, total load is 173, so length on one unit of load is Ic= 3. 

If we have to put optional nodes into the solution, then their choice is considerably 

influenced by the given obligatory nodes. In the optimal solution there will be chosen those 

nodes that are close to these obligatory nodes while creating the routes, where won´t be 

increased the total length of routes a lot by including them into the routes. On the other hand, 

the amount of transfer will increase. 

3. Linear Model with a Restraint on the Amount of the Efficiency Index Ic  

It is possible to show experimentally that by adding the optional nodes into the solution 

the efficiency index Ic might not only decrease, but it can increase as well. While minimizing 

the efficiency index Ic, there are not many or even no optional nodes in the optimal solution. 

In praxis it won´t be necessary to insist on the minimal value of the efficiency index and 

therefore it will be possible to allow a tiny increase such as the number of optional nodes 

would consequently increase. 

Vehicle routing problem with optional nodes can be solved by the linear objective 

function, if there is an upper bound Icmax of the total costs per volume unit Ic (costs can be 

represented e.g. by the length of all routes). Objective function might be e.g. the total volume 

of transport with its maximization. The constraint for upper bound of the efficiency index Ic 

(which is given) will be transformed into the linear inequation in the form of (7). 
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4. Model with Given Number of Optional Nodes 

In the previous chapter there was suggested a model, where we have given upper bound 

of costs to the unit of transport Ic. Therefore, it is difficult to determine the upper bound. We 

can go on so that we set the number of optional nodes that have to be included into the 

solution (their concrete choice will be solved by mathematical model). After that we can 

compare optimal values of the efficiency index Ic for different given numbers of optional 

nodes included into the solution. Mathematical model is (1)-(6) and (8). 

The equation (8) assures that exactly n0 nodes will be in the optimal solution. 

Table 2. Optimal solution depending on given number of optional nodes 

Solution     

n0 C L Ic Routes 

1 12 20 0.60 1-3-1 

2 30 25 1.2 1-3-2-1 

3 344 115 2.99 1-3-1; 1-4-6-1 

4 362 120 3.01 1-2-3-1; 1-6-4-1 

5 375 120 3.12 1-2-3-1; 1-4-9-7-1 

6 704 215 3.27 1-3-2-1; 1-6-4-1; 1-8-7-1 

7 888 235 3.77 1-4-6-1; 1-5-3-2-1; 1-7-8-1 

8 1203 315 3.81 1-2-3-1; 1-6-4-1; 1-7-8-1; 1-11-10-1 

9 1387 335 4.14 1-2-3-5-1; 1-4-6-1; 1-7-8-1; 1-10-11-1 

10 1571 355 4.425 1-5-7-1; 1-6-1; 1-8-9-4-2-3-1; 1-11-10-1 

 

Optimal solution is shown in Table 2 where column C contains total length of routes, 

column L total load. 

5. Heuristic Method 

The VRP is NP-hard, so it is suitable to propose and use a heuristic method. One of them 

is nearest neighbor method (NNM), which has to be modified tor our problem. NNM is easy 

to implement and executes quickly, but it does not yield the optimal solution. The solution is 

created by gradually adding another node to the sequence of nodes obtained so far until stop 

rule is met. 

Stop rule is: the prescribed number of nodes n0 in the solution is reached or it is no 

possible to reduce the cost index Ic by adding another node. 

The solution consists of one o more routes which are created gradually by adding nodes 

not yet included in routes. A load on each route must exceed the capacity of the vehicle. 

 

Notation: 

n´ number of nodes included in some route, 

s the last node of the last created route, 
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L´ load of the last route, 

N´ a set of nodes yet not included in routes, 

L, C the total load and length of yet created routes. 

 

These are steps of NNM algorithm: 

Step 1: Put n´:=0, L´:=0, s:=1, N´:={2,3,…,n}, L:=0, C:=0. 

Step 2: If n´= n then stop. 

Find k such that: 

 
𝐶−𝑑𝑠1+ 𝑑𝑠𝑘+ 𝑑𝑘1 

𝐿+ 𝑞𝑘
= min 𝑗     

𝐶−𝑑𝑠1+ 𝑑𝑠𝑗+ 𝑑𝑗1 

𝐿+ 𝑞𝑗
 , where 𝑗 ∈ 𝑁´ , 𝐿´ + 𝑞𝑗 ≤ 𝑊. 

If k does not exists then a new route starts and put s:=1, L´=0, otherwise put 

 s:=k, L‘:= L‘+ qk , L:= L+ qk, , 𝐶 ≔ 𝐶 − 𝑑𝑠1 + 𝑑𝑠𝑘 + 𝑑𝑘1 , 𝑁´ ≔ 𝑁´ − {𝑘}. 

Go to Step 2. 

 

Use of NNM is shown on the Table 3. 

Table 3. Solution of NNM depending on given number of optional nodes 

NNM     

n0 C L Ic Routes 

1 12 20 0.60 1-3-1 

2 30 25 1.2 1-3-2-1 

3 138 35 3.94 1-3-2-4-1 

4 364 100 3.64 1-3-2-4-7-1 

5 692 185 3.75 1-6-1; 1-3-2-4-7-1 

6 886 205 4.32 1-5-1; 1-6-1; 1-3-2-4-7-1 

7 1070 235 4.55  1-5-8-1; 1-6-1; 1-3-2-4-7-1 

8 1074 255 4.2  1-5-8-9-1; 1-6-1; 1-3-2-4-7-1 

9 1495 285 5.24 1-5-8-9-11-1; 1-6-1; 1-3-2-4-7-1 

10 1587 355 4.47 1-10-1; 1-5-8-9-11-1; 1-6-1; 1-3-2-4-7-1 

6. Conclusions 

Topic of the paper is modification of vehicle routing problem in which part or all nodes are 

optional. It solved problem which nodes choose and include into optimal routes. A nonlinear 

object function Ic is minimized. Function Ic represents costs index: total costs per unit load of all 

routes. Two alternative approaches are proposed and illustrative example is presented. 
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