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Abstract: Data envelopment analysis (DEA) techniques belong to the most often applied models 

for ranking of decision making units (DMU) or alternatives according to their input and output 

characteristics. Traditional DEA models assign to the DMUs efficiency scores that allow their 

ranking – higher scores higher position in the final ranking. The frequently discussed problem is 

ranking of efficient units because they reach maximum efficiency score. Their number can be 

quite high depending on the number of DMUs and the number of variables (inputs and outputs) 

of the model. The aim of the paper is to compare the most important methods for ranking of 

DMUs. Their application may lead to different rankings. In this case we offer a procedure for 

aggregation of several different rankings into one final result. The proposed methodology will 

be illustrated on a numerical example and the results discussed. 
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1. Introduction 

DEA models is a non-parametric method for estimation of the production possibility set 

(PPS) frontiers, and identification of the DMUs being on the frontier (efficient DMUs) on one 

hand, and the remaining units (inefficient DMUs) on the other hand. First DEA models were 

introduced by Charnes et al. (1978), and further developed by many authors in the next decades 

until the present time. Charnes’ et al. (1978) is known in the literature as CCR model. DEA 

models evaluate the set of DMUs according to their variables (inputs and outputs). Let us 

consider the set of n DMUs characterized by m inputs and r outputs. The values of the inputs 

for the DMUs are xij, i = 1, …, n, j = 1, …, m. Analogously, yik, i = 1, …, n, k = 1, …, r, are the output 

values. The traditional formulation of the DEA model in its input orientation is as follows: 
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i ≥ 0, −  0,js
+  0,ks  i = 1,…, n, j = 1,..., m, k = 1,..., r,  

− ,js  j = 1,..., m, + ,ks  k = 1,..., r, are slack variables, and DMUq is the unit under evaluation. 

Optimal objective function value of model (1) equals to 1 for the units belonging to the PPS 

frontier, and less than 1 for the inefficient units. Lower values indicate that the unit is further 

from the frontier. The inefficient units are easily ranked according to their efficiency scores. 

For the efficient ones a suitable procedure for their discrimination must be applied. There 

have been proposed many such procedures in the literature in the past. In our study, five 

procedures based on solving linear programs are considered. 

 Except the traditional radial DEA models – their typical representative is model (1) – 

have been proposed models based on measuring the efficiency using slack variables only. 

Tone’s model (Tone, 2001) belongs to the most frequently applied in current research studies. 

This family of models is denoted as SBM (slacks-based measure) models. Its mathematical 

formulation follows: 
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Model (2) returns objective function (efficiency score) equal to 1 for SBM efficient units 

and it is less than one for the inefficient ones. It is proved that the SBM efficiency score is 

always less or equal than the CCR efficiency score. Model (2) is not linear, but its linearization 

can easily be done using Charnes-Cooper transformation. 

The paper is organized as follows. Section 2 contains formulation of all DEA models used 

further in numerical experiments. Section 3 presents the results of all methods on an example 

published in (Jablonský, 2016) that is often used for such comparisons. The final aggregated 

ranking is derived using an original optimization procedure. Aggregation of rankings is a 

frequently discussed problem in current research. One of the last papers in top OR journals 

about this topic is (Mohammadi & Rezaei, 2020). The paper concludes by discussion of results 

and future research possibilities. 

 



2. Methodology 

Standard DEA models as model (1) and (2) allow (CCR or SBM) ranking of inefficient 

units according to their efficiency scores. To rank efficient units, because to their maximum 

efficiency scores, many models based on various principles have been proposed in the past. 

For comparison purposes we will apply the following ones: 

 

1. Andersen and Petersen’s (1993) super-efficiency model – AP model. This model removes 

the unit under evaluation from the set of DMUs and measures the distance of this unit 

from the new PPS frontier. Higher distance means that higher increasing inputs or 

decreasing outputs does not affect the efficient status of the unit, i.e. the unit under 

evaluation has higher super-efficiency score. The input-oriented formulation of the AP 

model is the same as model (1). Only difference is in putting the weight of the unit under 

evaluation equal to zero. As the result, the super-efficiency score of the originally 

efficient unit is greater than 1. 

2. Tone’s (2002) super-efficiency model – SSBMT model. It is, as in the previous case, a 

model from the category of super-efficiency models. The objective function of this model 

equals to 1 if the unit under evaluation is SBM inefficient, i.e. has SBM efficiency score 

computed by model (2) less than 1. For SBM efficient units returns a super-efficiency 

score greater than 1 which allows complete ranking of all DMUs. The non-linear 

formulation of this model is below: 
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As the SBM model (2), model (3) can be transformed into a linear program easily. 

Moreover, its input- and output-orientation versions have been proposed in (Tone, 2002). 



3. Jablonský (2012) formulated a super-efficiency goal programming model (SBMG model) 

that can be used for comparison purposes with other ranking models. Its mathematical 

formulation follows: 
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j j k k
s s s s are variables measuring the negative and positive deviations of the 

virtual unit and the unit under evaluation in input and output space. D is the maximum 

relative deviation, and t is the parameter that may be set to 0 or 1. The value t = 0 ensures 

minimization of the sum of relative deviations, and t = 1 minimizes the maximum 

deviation. The model is applied on CCR (or SBM) efficient units and returns 

super/efficiency score greater or equal than 1. 

4. An interesting concept that allows complete ranking of the DMUs is measuring the 

distance of the units from the pessimistic frontier introduced by Wang et. al (2007). 

Pessimistic frontier is the opposite of the optimistic PPS frontier constructed by CCR 

model (1). 
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The optimal value P
q is greater than 1. Higher values indicate that the unit under 

evaluation is further from the frontier. Hence higher values of the pessimistic model lead 

to higher ranking of the DMUs. It is possible to formulate a pessimistic super-efficiency 

model in a similar way as in the optimistic case. This model allows distinguishing among 

pessimistic efficient units. 

Cross efficiency evaluation is an approach based on completely different principles than 

super-efficiency models. In this approach the unit under evaluation is evaluated using 

the optimal weights of the other unit of the set. Let Eqj be the efficiency score of the q-th 

unit using the optimal weights of the j-th unit derived using traditional CCR model. The 

final result of the evaluation for the q-th unit is the average cross-efficiency score 

computed as a simple average 

, q = 1, …,n. 
(6) 

The maximum value of q scores is 1. Higher values show higher level of efficiency and 

higher ranking. 

3. Results 

In this section, the results of all five algorithms are computed with the dataset that 

contains 19 DMUs and 5 variables (2 inputs and 3 outputs). This dataset originates from the 

paper (Jablonský, 2016) and due to the limited space is not displayed here. Because the results 

of all methods are different, the final ranking will be derived using an optimization procedure 

that minimizes the sum of deviations of the final ranking and all five rankings obtained by 

the methods mentioned in the previous section. 

Table 1 contains efficiency and super-efficiency scores. In the first column, there are 

CCR efficiency scores (less than 1) computed by model (1), and for CCR efficient units (units 

1, 11, and 18) the super-efficiency scores derived by Andersen and Petersen (1993) model 

(greater than 1). Second column of Table 2 contains the efficiency scores obtained by SBM 

model (2), and for the SBM (and CCR efficient also) efficient units their super/efficiency 

scores derived by model (3). The SBMG model (4) is just the model that may be used for 

CCR efficient units to distinguish among them. That is why, the results in the third column 

of Table 3 are chosen as a geometric average of CCR and SBM efficiency scores, except for 

the CCR efficient units. The fourth column presents the scores given by the pessimistic 

model (5) and by its super-efficiency modification. Higher values in this column indicate 

that the unit is further from the pessimistic frontier, and it is better evaluated in the final 

ranking. The last column contains cross-efficiency scores computed by (6). 
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Table 1. Efficiency and super-efficiency scores 

DMUs CCR/AP SBM/SSBM SBMG  PESSIM CROSS 

1 1.389 1.103 1.305 1.031 0.698 

2 0.618 0.464 0.535 0.807 0.520 

3 0.985 0.850 0.915 1.588 0.858 

4 0.977 0.828 0.899 1.293 0.766 

5 0.837 0.688 0.759 1.395 0.761 

6 0.875 0.620 0.737 1.401 0.754 

7 0.657 0.415 0.522 0.979 0.531 

8 0.773 0.688 0.729 1.278 0.708 

9 0.972 0.777 0.869 1.583 0.857 

10 0.853 0.672 0.757 1.254 0.727 

11 1.407 1.225 1.521 1.580 0.984 

12 0.788 0.642 0.711 1.216 0.701 

13 0.674 0.390 0.513 0.882 0.533 

14 0.693 0.524 0.603 1.103 0.619 

15 0.850 0.721 0.783 1.119 0.685 

16 0.932 0.828 0.878 1.393 0.804 

17 0.948 0.689 0.808 1.370 0.795 

18 1.319 1.168 1.386 1.289 0.926 

19 0.833 0.723 0.776 1.190 0.711 

 

Table 2 contains ranking of all units according to the scores in Table 1. Their analysis 

shows quite high differences in the positions of the DMUs. That is why a simple optimization 

procedure for aggregation of rankings is proposed. The model that results in final ranking of 

n units that minimizes the sum of all positive and negative deviations from m particular 

rankings is formulated as follows: 
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where xij, i = 1,…, n, j = 1,…, m, is the position of the i-th unit in the j-th ranking, yi, i = 1,…, m, 

is the final position of the i-th unit, and ij
d− , ij

d+  are deviational variables to be minimized. zij, 

i = 1,…, n, j = 1,…, m, are artificial binary variables that allows to ensure the uniqueness of the 

final ranking. Model (7) can be easily modified to find the solution that minimizes the 

absolute value of the maximum deviation. Both aggregated rankings (SUM and MAXMIN) 

are presented in the last two columns of Table 2. 



Table 2. Ranking of the DMUs 

DMUs CCR/AP SBM/SSBM SBMG PESSIM CROSS SUM MINMAX 

1 2 3 3 16 14 3 9 

2 19 17 17 19 19 19 19 

3 4 4 4 1 3 4 3 

4 5 6 5 8 7 7 6 

5 12 11 11 5 8 10 11 

6 9 15 13 4 9 9 8 

7 18 18 18 17 18 18 18 

8 15 12 14 10 12 14 14 

9 6 7 7 2 4 5 4 

10 10 13 12 11 10 12 10 

11 1 1 1 3 1 1 1 

12 14 14 15 12 13 15 15 

13 17 19 19 18 17 17 17 

14 16 16 16 15 16 16 16 

15 11 9 9 14 15 13 12 

16 8 5 6 6 5 6 5 

17 7 10 8 7 6 8 7 

18 3 2 2 9 2 2 2 

19 13 8 10 13 11 11 13 

4. Discussion and Conclusions 

The results presented in Table 2 show the expected outcome – the similarity in rankings 

among the ones obtained by the family of super-efficiency models is very high. On the contrary, 

cross-efficiency approach produces in some cases significant differences. It is not so surprising 

because this model is based on completely different principles than the super-efficiency 

models. Moreover, the results given by this model need not be always unique because of not 

rarely occurring alternative solutions the differences. Pessimistic frontier model is closer to the 

CCR results but there is an exception. In our case, it is the first unit of the set. This unit is efficient 

in the optimistic (CCR) model and pessimistic model as well. It means that this unit is the 

member of both (optimistic and pessimistic) frontiers. This is the reason why this unit is ranked 

much worse in the pessimistic model than in the optimistic one. 

The model for the aggregation of several different rankings is a tool that can allow to get 

one final ranking, e.g. if several decision makers express their opinions and try to find a 

compromise solution. In the case of our example, both aggregated rankings are similar each 

other except for the first unit where the difference is six positions. It is caused by worse 

positions of this unit in pessimistic and cross-evaluation models. 

The models for aggregation of rankings are both easy to solve even they are discrete 

optimization models. The numerical experiments confirm that they produce the final ranking 

for the problems with up to 200 units and up to 10 single rankings in few second using simple 

discrete solvers. Ranking of the DMUs in DEA models is still a frequently discussed problem. 

The future research may be concentrated on the ranking of the units in network production 

systems. 
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