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Abstract: The k-generalized Fibonacci sequence (F(k)
n )n (sometimes also called k-bonacci or k-step

Fibonacci sequence), with k ≥ 2, is defined by the values 0, 0, . . . , 0, 1 of starting k its terms and such way that
each term afterwards is the sum of the k preceding terms. This paper is devoted to the proof of the fact that the
Diophantine equation F(k)

m = mt, with t > 1 and m > k + 1, has only solutions F(2)
12 = 122 and F(3)

9 = 92.

Keywords: k-generalized Fibonacci sequence; Diophantine equation; linear form in logarithms;
continued fraction
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1. Introduction

The well-known Fibonacci sequence (Fn)n≥0 is given by the following recurrence of the second order

Fn+2 = Fn+1 + Fn,

for n ≥ 0, with the initial terms F0 = 0 and F1 = 1. Fibonacci numbers have a lot of very interesting
properties (see e.g., book of Koshy [1]).

One of the famous classical problems, which has attracted a attention of many mathematicians during
the last thirty years of the twenty century, was the problem of finding perfect powers in the sequence of
Fibonacci numbers. Finally in 2006 Bugeaud et al. [2] (Theorem 1), confirmed these expectations, as they
showed that 0, 1, 8 and 144 are the only perfect powers in the sequence of Fibonacci numbers. This result is
usually given in the relevant mathematical literature as the Fibonacci Perfect Powers Theorem. The result
itself is extremely interesting, but the way of its proof is even more interesting to mathematicians, as this
proof combined two powerful techniques from number theory, namely, Baker’s theory on linear forms in
logarithms and the tools from the Wiles’s proof of the Last Fermat Theorem.

This result started great efforts for finding perfect powers in some generalized Fibonacci sequences.
Luca and Shorey [3], Theorem 2 showed that products of two or more consecutive terms in the Fibonacci
sequence is a perfect power only for the trivial case F1 F2 = 1. Marques and Togbé [4] found that Fibonomial
coefficients {m

k}, defined by {
m
k

}
=

Fm · · · Fm−k+1
F1 · · · Fk

,
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where m and k are non-negative integers, 0 ≤ k ≤ m, and {m
0} = 1, are not a perfect power for

m > k + 1 > 2. Marques and Togbé [5] found all Fibonacci and Lucas numbers written in the form
2a + 3b + 5c and Qu, Zeng, and Cao [6] generalized this result for the form 2a + 3b + 5c + 7d.

Let F(k), k ≥ 2, denote a sequence (F(k)
n )n≥−(k−2) of the k-generalized Fibonacci numbers, whose

terms satisfy the following recurrence relation

F(k)
n+k = F(k)

n+k−1 + F(k)
n+k−2 + · · ·+ F(k)

n ,

with values 0, 0, . . . , 0, 1 of starting k its terms and with the first nonzero term F(k)
1 = 1.

Recently, a lot of works were devoted to the sequences F(k). In particular, in 2013, Bravo and Luca [7]
and Marques [8] confirmed (independently) a conjecture, proposed by Noe and Post [9], on coincidences
between terms of these sequences.

Chaves and Marques [10] proved that the Diophantine equation (F(k)
n )2 + (F(k)

n+1)
2 = F(k)

m has no
solution in positive integers m, n, k for n > 1 and k ≥ 3. This result was generalized by Bednařík et al. [11],
they showed that the Diophantine equation (F(k)

n )2 + (F(k)
n+1)

2 = F(l)
m has no solution in positive integers m,

n, k, l for n > 1 and 2 ≤ k < l. Chaves and Marques [12] generalized [10] in a different way, as authors
dealt with the Diophantine equation (F(k)

n )s + (F(k)
n+1)

s = F(k)
m in positive integers m, n, k, s and they proved

that it has no solution if 3 ≤ k ≤ max(n, log s) (this equation was solved completely in [13]).
Despite all the above mentioned achievements, finding a complete solution to the following

Diophantine equation remains an open problem

F(k)
m = yt. (1)

The most important reason for that is probably in the fact that the method of Bugeaud et al. [2] cannot
be applied to F(k) for k ≥ 3, as the proof of the case k = 2 is related to ternary Diophantine equation with
signature (p, p, 2) and it use a lot of identities and divisibility properties for F(2), which we do not have
for k ≥ 3.

In the last decade, some authors have studied special cases of (1). Bravo and Luca [14] created
a method to solve the equation F(k)

m = 2t and Marques and Trojovský [15] solved the case F(k)
m = kt.

In this paper we continue in this project, as we work on Equation (1) for y = m. More precisely,
our main result is the following

Theorem 1. Let m, k, t be any integers, with m > k + 1. Then the only solutions of the Diophantine equation

F(k)
m = mt (2)

are
(m, k, t) ∈ {(12, 2, 2), (9, 3, 2)}.

The condition m > k + 1 is established in Theorem 1 to avoid the uninteresting solutions related to m
being a power of two. For instance, if p is any odd prime number, then (m, k, t) = (2p, k, (2p − 2)/p) is a
solution of Equation (2) for all k ≥ 2p − 1.

Now we describe our proof of Theorem 1. Using Dresden and Du [16] ( Formula (2)), we obtain an
upper bound for a linear form in three logarithms related to Equation (1). Then, using a lower bound due to
Matveev we gain an upper bound of t in terms of m and k. Next, we use a similar method as in [14], but in
our proof we get an upper bound for a linear form in two logarithms and our case is more complicated, as we
need need to find an upper bound for |2n−2 −mt|. Then, by a result due to Laurent we find an absolute
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upper bound for k in terms of log m and consequently to gain an absolute upper bound for m, k and t.
Finally, with the help of some facts on convergent of continued fractions we can improve the upper bound
for k in terms of t and a constant. The computations in the paper were performed using Mathematica R©

(see [17]).
We remark that the main difference between this work and the paper in [15] is that the case y = k

in (1) is easier, since the growth of F(k)
n (which is 2n−2) does not depend on k. Also, the nature of the

polynomial-exponential equation in the case y = k is computationally better in order to use a reduction
method (to find all solutions), since the upper bound for k is substantially smaller than the one for m.

Our main approach of the proof of Theorem 1 is a similar as in [14], as we think that this kind of
approach is very helpful to the readers.

2. Auxiliary Results

First of all, we shall recall some tools and facts which we use hereafter.
It is well-known that the characteristic polynomial

ψk(x) := xk − xk−1 − · · · − x− 1

of (F(k)
n )n is irreducible over Q[x] (see [18]) and it has just one single and dominant zero α outside the unit

circle. This zero α is located between 2(1− 2−k) and 2 (see [19]). Also, Dresden and Du [16] (Theorem 1)
gave a simplified “Binet-like” formula for F(k)

n in the following form

F(k)
n =

k

∑
i=1

αi − 1
2 + (k + 1)(αi − 2)

αn−1
i , (3)

where α1 = α, α2, . . . , αk are the roots of ψk(x). Further, in [20] (Lemma 1) it was proved that

αn−2 ≤ F(k)
n ≤ αn−1, for all n ≥ 1. (4)

Clearly, the roots of ψk(x) inside the unit circle have almost negligible contribution in formula (3).
More precisely, Dresden and Du [16] proved that

|F(k)
n − g(α, k)αn−1| < 1

2
,

where we adopt the notation g(x, y) := (x− 1)/(2 + (y + 1)(x− 2)).
The main powerful tool to prove Theorem 1 is a lower bound for a linear form logarithms à la Baker,

which was given by the following result of Matveev (see [21] or [2] (Theorem 9.4)).
In the following, we shall use the a more accurate lower bound for linear forms in three logarithms to

prove our main result

Lemma 1. Let γ1, γ2, γ3 be real algebraic numbers and let b1, b2, b3 be nonzero integer numbers. Define

Λ = b1 log γ1 + b2 log γ2 + b3 log γ3.

Let D be the degree of the number field Q(γ1, γ2, γ3) over Q and let A1, A2, A3 be any positive real numbers,
which satisfy the following conditions

Aj ≥ max{Dh(γj), | log γj|, 0.16}, for j = 1, 2, 3.
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Assume that
B ≥ max{1, max{|bj|Aj/A1; 1 ≤ j ≤ 3}}.

Define also
C1 = 6750000 · e4(20.2 + log(35.5D2 log(eD))).

If Λ 6= 0, then
log |Λ| ≥ −C1D2 A1 A2 A3 log(1.5eDB log(eD)).

We used in the previous lemma, the logarithmic height of an n-degree algebraic number γ, which is
defined as

h(γ) =
1
n
(log |a0|+

n

∑
j=1

log max{1, |γ(j)|}),

where a0 is the leading coefficient of the minimal polynomial of γ (over Z) and (γ(j))1≤j≤n are the
conjugates of γ.

Finally, we summarize all necessary notations and previous results and we can start the proof of
our Theorem 1.

3. Some Key Lemmas

3.1. Upper Bounds for m in Terms of t and for t in Terms of k and m

The aim of this subsection is to prove the following result

Lemma 2. If (m, k, t) is an integer solution satisfying Diophantine Equation (2), with m > k + 1, then

m < (5t + 4) log(2.5t + 2) and t < 8.6 · 1011k4 log2 k log m.

Proof. Of course, we can consider k ≥ 3. By using (4), we get αm−2 ≤ mt and after applying the
log function

m
log m

< 2.5t + 2,

where we used that α > 7/4. Now we can use the following result on function x/ log x (from [14], p. 74).
Since the function x/ log x is increasing for x > e the following holds

x
log x

< A implies that x < 2A log A. (5)

Thus, setting x := m and A := 2.5t + 2 in (5), we get m < (5t + 4) log(2.5t + 2).
Now, by using Equation (2) together with Equation (3) we obtain

g(α, k)αm−1 −mt = Ek(m) ∈ (−1/2, 1/2),

where Ek(m) := ∑k
i=2 g(αi, k)αm−1

i . Thus∣∣∣∣ g(α, k)αm−1

mt − 1
∣∣∣∣ < 1

mt ,

where we used that |Ek(m)| < 1/2. Thus
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|eΛ − 1| < 1
mt , (6)

where Λ := log(g(α, k))− t log m + (m− 1) log α.
Now, we would like to use Lemma 1. So, we take

γ1 := g(α, k), γ2 := m, γ3 := α

and
b1 := 1, b2 := −t, b3 := m− 1.

Thus, we have D = [Q(α) : Q] = k, h(γ2) = log m and h(γ3) < 0.7/k. To find an estimate for h(γ1),
we use the following estimate for h(g(α, k)), which was given in ([14], p. 73)

h(γ1) = h(g(α, k)) < log(4k + 4).

Hence, we can take A1 := k log(4k + 4), A2 := k log m and A3 := 0.7.
Note that

max{1, max{|bj|Aj/A1; 1 ≤ j ≤ 3}} = t log m
log(4k + 4)

≤ t log m
log 17

=: B.

To finally apply Lemma 1, we have to prove that g(α, k)αm−1/mt 6= 1. Suppose, towards
a contradiction, that g(α, k)αm−1 = mt. Then, we can conjugate g(α, k)αm−1 = mt in Q(α) to obtain

5t ≤ mt = |g(αi, k)||αi|m−1 < 1,

where i > 1, leading to an absurd since t > 1. Now, we can really use Lemma 1. The straightforward
calculation leads to

log |Λ| > −1.75 · 1010k4 log2 k log(1.44kt log m log(ek)), (7)

where we used that log(4k + 4) < 2.6 log k (we still have k ≥ 3).
By combining (6) and (7), we obtain

t log m < 1.75 · 1010k4 log2 k log(1.44kt log m log(ek))

and after clear simplification the rest of assertion follows.

3.2. The Small Cases 2 ≤ k ≤ 343

Lemma 3. If (m, k, t) is an integer solution satisfying Diophantine Equation (2), with m > k+ 1 and 2 ≤ k ≤ 343, then

(m, k, t) ∈ {(12, 2, 2), (9, 3, 2)}.

Proof. If k ≤ 343, then by Lemma 2 we get t < 4.06 · 1023 log m and so

m < (5 · 4.06 · 1023 log m + 4) log(2.5 · 4.06 · 1023 log m + 2)

leading to m < 7.75 · 1027 and consequently to t < 2.61 · 1025.
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3.3. An Upper Bound for k in Terms of log m and t in Terms of m

By hypothesis, we have that k < m− 1, however, in this subsection, we shall show the following
stronger result (we remark that m− 1 > 108.6 log3 m for all m ≥ 196688):

Lemma 4. If (m, k, t) is an integer solution satisfying Diophantine Equation (2), with t > 1 and m > k + 1.
Then t = b(m− 1) log 2/ log mc and

k < 108.6 log3 m.

Proof. Since mt > (7/4)m−2, then t > (m − 2) log(7/4)/ log m > 0.4
√

m, for m ≥ 5. Combining this
inequality with Lemma 2, we have

m
log2 m

< 4.7 · 1024k8 log4 k.

Since the function x/ log2 x is increasing for x > e, it is easy to prove that

x
log2 x

< A =⇒ x < 12.5A log2 A. (8)

In fact, on the contrary, i.e., if x ≥ 12.5A log2 A, then

x
log2 x

≥ 12.5A log2 A
log2(12.5A log2 A)

>
12.5A log2 A
12.5 log2 A

= A,

which contradicts our inequality. Here we used that log(12.5A log2 A) <
√

12.5 log A, since log(12.5) +
2 log log A < (

√
12.5− 1) log A, for A > e.

Thus, by using (8) for x := m and A := 4.7 · 1024k8 log4 k, we have that

m < 12.5(4.7 · 1024k8 log4 k) log2(4.7 · 1024k8 log4 k).

Now, the inequality log2(4.7 · 1024k8 log4 k) < 61 log k, for k ≥ 5, yields

m < 3.6 · 1027k8 log5 k.

By Lemma 3, from now on we may consider k ≥ 344 and then we have

m < 3.6 · 1027k8 log5 k < 2k/2.

By the key argument from ([14], p. 77–78), we have

|2m−2 −mt| < 5 · 2m−2

2k/2 ,

where we needed greatly the condition m > k + 1.
After dividing by 2m−2, we get

|1−mt · 2−(m−2)| < 5
2k/2 .
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If mt/2m−2 ∈ (−∞, 1/2] ∪ [2,+∞), then |1 − mt · 2−(m−2)| ≥ 1 yielding 2k/2 < 5 which is
a contradiction, since k ≥ 344. Thus, we have 2m−3 < mt < 2m−1. Now, by applying the log function and
using that (m− 1) log 2/ log m− (m− 3) log 2/ log m = 2 log 2/ log m < 1, for m ≥ 5, we get that there is
a unique possible value for t, namely

t =
⌊
(m− 1) log 2

log m

⌋
.

From now on, t will denote the value above.
Now, we rewrite the above inequality as

|eΛ∗ − 1| < 5
2k/2 ,

where Λ∗ = t log m− (m− 2) log 2. Since for x < 0, it holds that |1− ex| = 1− e−|x|. To avoid unnecessary
repetition, we may suppose that Λ∗ > 0. Then Λ∗ < eΛ∗ − 1 < 5/2k/2 and by applying the natural
logarithm function, we arrive to

log |Λ∗| < log 5− k
2

log 2. (9)

Now, we find a lower bound for log |Λ∗|. We can use a result due to Laurent [22] (Corollary 2) for
m = 24 and C2 = 18.8 (assumptions are met because 5 and 2 are multiplicatively independent). In the first
instance We have to introduce some notations. Let α1, α2 be real algebraic numbers, satisfying |αj| ≥ 1, b1,
b2 be positive integers and

Γ = b2 log α2 − b1 log α1.

Let A1 and A2 be real numbers, which satisfy

log Aj ≥ max{h(αj), | log αj|/D, 1/D},

where j ∈ {1, 2} and D is the degree of the number field Q(α1, α2) over Q. Let us further define

b′ =
b1

D log A2
+

b2

D log A1
.

Laurent’s result asserts that if α1, α2 are multiplicatively independent, then

log |Γ| ≥ −18.8 · D4 (max{log b′ + 0.38, m/D, 1}
)2 · log A1 log A2.

Then we set
b1 = m− 2, b2 = t, α1 = 2, α2 = m.

Hence, D = 1 and we can take log A1 = log 2 and log A2 = log m. Then we get

b′ =
m− 2
log m

+
t

log 2
< 2.1(m− 2),

where we used that m ≥ 5 and t ≤ m− 2.
Due to [14]), we may suppose that m is not a power of 2. Thus, m and 2 are multiplicatively

independent and by ([22], Corollary 2), we have

log |Λ∗| ≥ −13.1 · (max{log(2.2(m− 1)) + 0.38, 24})2 log m. (10)
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Combining estimates (9) and (10) to gain

k ≤ 108.6 log3 m.

4. The Proof of Theorem 1

By combining Lemma 2 with Lemma 4, we obtain the following absolute upper bounds

m < 1053, k < 2 · 108, and t < 5.9 · 1049. (11)

Now, we use (9) to get ∣∣∣∣ log m
log 2

− m− 2
t

∣∣∣∣ < 5
2k/2t log 2

.

We claim that there is no solution of Equation (2), for k ≥ 344, if (2k/2 log 2)/5 > (A + 2)t, with

A := max
1≤s≤240

5≤m≤1053

{as+1,m},

where [a1,m; a2,m, . . .] denotes the continued fraction expansion of log m/ log 2.
In fact, on the contrary, we would have∣∣∣∣ log m

log 2
− m− 2

t

∣∣∣∣ < 1
(A + 2)t2 . (12)

By Legendre’s criterion for continued fractions, the previous inequality implies that (m − 2)/t
is a convergent of the continued fraction of log m/ log 2, i.e., (m − 2)/t = p`,m/q`,m for some
` > 0 (here ps,m/qs,m denotes the s-th convergent of the continued fraction of log m/ log 2). Since
gcd(p`,m, q`,m) = 1, then q`,m | t and therefore we used the upper bound for t from (11) to obtain(

1 +
√

5
2

)`−2

≤ F` ≤ q`,m ≤ t < 5.9 · 1049.

The previous inequality yields ` ≤ 240. On the other hand, the following well-known fact on
continued fraction ∣∣∣∣ log m

log 2
−

p`,m

q`,m

∣∣∣∣ > 1
(a`+1,m + 2)q2

`,m

leads to ∣∣∣∣ log m
log 2

− m− 2
t

∣∣∣∣ > 1
(A + 2)t2 , (13)

where we used that q`,m ≤ t and A ≥ a`+1,m, since ` ≤ 240. However, inequalities (12) and (13) lead to
an absurdity.

So, we obtain (2k/2 log 2)/5 ≤ (A + 2)t, or equivalently, k ≤ 2.9 log(7.3(A + 2)t). By using
computational tools we can see that A < 5.3 · 1074 and then

k < 2.9 log(7.3(5.3 · 1074 + 2) · 5.9 · 1059) < 903.856
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yielding k ≤ 903. Now, we iterate the previous lemmas to obtain

m < 5.78 · 1029 and t < 1.82 · 1027.

Now, we proceed exactly as before to obtain that k ≤ 2.9 log(7.3(A′ + 2)t), where

A′ := max
1≤s≤132

5≤m≤5.78·1029

{as+1,m}.

Again, A′ < 7.4 · 1049 and so k ≤ 520. We repeat this argument until arriving at k ≤ 343, which is
a contradiction (by Lemma 3). Therefore, the proof is complete.

5. Conclusions

In this paper we have been interested in finding powers of their indexes, which appear in k-generalized
Fibonacci sequences. Thus, we have studied the Diophantine equation F(k)

m = mt in positive integers k,
m, t, with k ≥ 2, t > 1, and m > k + 1. We have showed that this Diophantine equation has only two
solutions F(2)

12 = 122 and F(3)
9 = 92. Our proof has been based on a linear form in logarithms, a result due

to Laurent and some facts on convergents of continued fractions.
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