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Abstract: In this paper, we shall study the Diophantine equation un = R(m)P(m)Q(m), where un is a Lucas
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1 Introduction
Fix two relatively prime integers a and b and let (un)n≥0 be the Lucas sequencewith characteristic polynomial
f (x) = x2−ax−b, i.e., (un)n≥0 is the integral sequence satisfying u0 = 0, u1 = 1, and un = aun−1+bun−2, for all
integers n ≥ 2. Suppose that this sequence is non degenerated, i.e., a = ̸ 0 and α/β is not a root of unity, where
α and β are the roots of f (x). Themost famous example of a Lucas sequence is the Fibonacci sequence (Fn)n≥0
given by the recurrence relation Fn+2 = Fn+1 + Fn, with F0 = 0 and F1 = 1. These numbers are well-known for
possessing amazing properties (consult book [4] to �nd additional references and history).

There are many papers in the literature which address Diophantine equations involving Fibonacci num-
bers. A long standing problem asking whether 0, 1, 8 and 144 are the only perfect powers in the Fibonacci
sequence was recently con�rmed by Bugeaud, Mignotte and Siksek [1]. Also, Hoggatt [2] conjectured that
1, 3, 21 and 55 are the only Fibonacci numbers in the triangular sequence, i.e., of the form m(m + 1)/2. This
was proved byMing [14]. Many other similar equations have been considered during the years, we cite [5] and
references therein for the state of the art of these kind of problems.

Here, our goal is to study the Diophantine equation

un = R(m)P(m)Q(m), (1)

where (un)n≥0 is a Lucas sequence and R, P and Q are integer polynomials (under some weak technical
assumptions). Themotivation of this kind of form comes from the study of tridiagonal matrices. For instance,
the determinant of the n × n matrix 

2n 1 0 · · · 0 0 0
n2 2n 1 0 · · · 0 0
0 n2 2n 1 0 · · · 0
... 0 n2 2n

. . .
. . .

...

0
...

. . .
. . .

. . . 1 0
0 0 · · · 0 n2 2n 1
0 0 0 · · · 0 n2 2n



*Corresponding Author: Pavel Trojovský: Department of Mathematics, Faculty of Science, University of Hradec Králové,
Rokitanského 62, Hradec Králové, 50003, Czech Republic, E-mail: pavel.trojovsky@uhk.cz

Unauthenticated
Download Date | 9/5/19 3:01 PM

https://doi.org/10.1515/math-2019-0073


On Diophantine equations involving Lucas sequences | 943

is equal to nn(n + 1), for all n ≥ 1.
In this paper, we shall show describe how a method based on p-adic valuations can settle this kind of

equations. As our main result, we proved that

Theorem 1. Let P, Q, R be integer polynomials with positive leading coe�cients. Suppose that P and Q are non
constant and that deg P ≤ degQ. Then there exist only �nitely many solutions of the Diophantine equation (1)
in positive integers m, n. Actually, all the solutions are e�ectively computable.

We point out that the equation un = P(m) was studied by many authors. We cite, for example, the result in
[20, Theorem 1].

In the next theorem, we shall apply the method in the proof of Theorem 1 for �nding an upper bound for
the number of solutions when un = Fn, R(m) = k(m + 1) and P(m) = Q(m) = m. More precisely, we have

Theorem 2. Let k be a given positive integer. If m, n are positive integers such that

Fn = kmm(m + 1), (2)

then m ≤ max{89, log k}.

Finally, we �nd all solutions when 1 ≤ k ≤ 50.

Corollary 1. The only solutions of the Diophantine equation in (2) for 1 ≤ k ≤ 50 are

(n,m, k) ∈ {(3, 1, 1), (6, 1, 4), (9, 1, 17), (12, 2, 12)}.

The proof of this corollary can be done by using Mathematica for the range 1 ≤ m ≤ 89, 1 ≤ k ≤ 50 and
1 ≤ n ≤ 849.

2 Auxiliary results
Now, we recall some facts for the convenience of the reader.

Before stating the next lemma, we recall that for a positive integer n, the order (or rank) of appearance of
n in the Fibonacci sequence, denoted by z(n), is de�ned as the smallest positive integer k, such that n | Fk
(some authors also call it the order of apparition, as it was called by Lucas, or the Fibonacci entry point). There
are several results on z(n) in the literature. For example, recently, Marques [8–13] found closed formulas for
this function for some sequences related to the Fibonacci and Lucas numbers.

We recall that the p-adic order (or valuation) of r, νp(r), is the exponent of the highest power of a prime
p which divides r.

The p-adic order of Fibonacci numbers has been completely characterized, see [3, 7, 15]. For instance,
from the main results of Lengyel [7], we extract the following result.

Lemma 1. If n ≥ 1 and p ≠ 2 and 5, then

νp(Fn) =
{
νp(n) + e(p), if n ≡ 0 (mod z(p));
0, if n ≢ 0 (mod z(p)).

Here e(p) := νp(Fz(p)).

A proof of a more general result can be found in [7, pp. 236–237 and Section 5].
Actually, the p-adic valuation of a Lucas sequences was studied in [16] (see also [6]). In particular, it was

proved in [16, Corollary 1.7] that
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Lemma 2. If p - b and p ≥ 5, then

νp(un) =


νp(n), if p | ∆;
νp(n) + f (p), if p - ∆, τ(p) | n;
0, if p - ∆, τ(p) - n.

Here ∆ = (α − β)2 is the discriminant of (un)n≥0 (in our case, ∆ ≠ 0) and f (p) = νp(uτ(p)). Also, τ(p) = min{n ≥
1 : p | un} is the rank of apparition in the sequence (un)n≥0.

For (un)n≥0, we still have the existence of constants c and d, such that αn+c ≤ un ≤ αn+d, for all n ≥ 1 (this
can be proved by using the Binet formula and the fact that the roots of the recurrence satis�es that α/β is not
a root of unity). We also have the following lemma

Lemma 3. We have that f (p) ≤ 3p log α/ log p, for all prime p ≥ d.

Proof. Since pf (p) divides uτ(p), then
pf (p) ≤ uτ(p) ≤ α

τ(p)+d .

Now, the Lemma 2.3 in [17] says that τ(p) ≤ p + 1 (in fact, it is proved that τ(p) | p − (−1)p−1
(
∆
p

)
, where

(
·
p

)
is the Legendre symbol). Thus

pf (p) ≤ uτ(p) ≤ α
p+1+d < α3p

which yields f (p) ≤ 3p log α/ log p as desired.

Now we are ready to deal with the proof of the theorem.

3 Proofs

3.1 Proof of Theorem 1

Suppose that there are in�nitely many solutions for the equation in (1). Let S be the set of the values of m
belonging to a pair of a solution (n,m). Let k be the leading coe�cient of Q and ` = degQ. Also, let us denote
by T = max{T(P), T(Q), T(R)}, where T(F(x)) = L(F) + deg F (here L(F) denotes the length of a polynomial
F). Let m ∈ S, m > m0, such that

km
`

4 > logG(m)
log 7 + 1, (3)

where G(m) := T(mT +1) logmlog α − c (observe that all su�ciently large integer in Smust satis�es this inequality,
since logG(m) = O(logm)).

Let m ≥ m1 > m0 be an integer such that Q(m) > km`/2. Also, let P = {p1, p2, . . .} be the set of primes in
increasing order. Set pr = min{s ∈ P : 3L(P) log α/ log s < k/4}. As usual, let us denote ρ(q) as the greatest
prime factor of q. Let us suppose that P has at least two distinct roots (the other case can be handled in
much the same way, by choosing a prime p which is a factor of P(m) = t1(m − b)t2 for in�nitely many m’s).
Since P has at least two distinct roots, then a result of Siegel [19] says that ρ(P(m)) → ∞ as m → ∞ (in fact
ρ(P(m)) � log logm, see [18] and references therein). Thus ρ(P(m)) ∈ {p1, . . . , pr} only for �nitely many
values of m. So, take a value of m > m1 belonging to S with P(m) ≠ 0 and such that there exists a prime
p > max{5, b, d, pr} with p | P(m). Now, we use Lemma 2 to apply the p-adic valuation in the relation in (1)
to obtain

νp(n) + f (p) ≥ νp(un) = νp(R(m)) + Q(m)νp(P(m)) ≥ Q(m).

Thus νp(n) ≥ Q(m) − f (p) > km`/2 − f (p). By Lemma 3 , we have f (p) ≤ 3p log α/ log p. Since p | P(m),
then p ≤ |P(m)| ≤ L(P)mdeg P ≤ L(P)m`. Also, since p > pr, then 3L(P) log α/ log p < k/4. In conclusion,
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f (p) < km`/4 and so νp(n) > km`/4. Therefore, we have that pbkm
`/4c | n. So

7km
`/4−1 ≤ pbkm

`/4c ≤ n. (4)

Since αn+c ≤ un = R(m)P(m)Q(m) ≤ mT(mT+1), for m > 1, then

n ≤ T(mT + 1) logmlog α − c = G(m). (5)

By combining (3), (4) and (5), we arrive at the following absurdity

logG(m)
log 7 + 1 < km

`

4 ≤ log nlog 7 + 1 ≤ logG(m)log 7 + 1.

This shows that S must be �nite and the proof is complete.

3.2 Proof of Theorem 2

For the Diophantine equation in (2), we can suppose thatm > 2. Then, there exists a prime number p dividing
m. Thus p divides Fn and then

νp(n) + 2e(p) ≥ νp(Fn) ≥ m.

Thus νp(n) ≥ m − 2e(p). Since e(p) ≤ p logϕ/ log p (the proof is similar to the one of Lemma 3), then e(p) <
0.44m, for p > 2, and then νp(n) > 0.12m (here ϕ = (1 +

√
5)/2 and we used that e(2) = 1 and that m − 2 >

0.12m, for m ≥ 3). This means that 20.12m−1 ≤ n.
Suppose, towards a contradiction, that m > max{89, log k}, then ϕn−2 ≤ kmm(m + 1) and so

n ≤ ((logm + 1)m + log(m + 1))/ logϕ + 2 (here we used that log k < m). Therefore

0.12m − 1 < log(((logm + 1)m + log(m + 1))/ logϕ + 2)
log 2 .

Thus m ≤ 89 which gives an absurdity. In conclusion, we have that m ≤ max{89, log k} as desired.
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