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Abstract: The elementary symmetric functions play a crucial role in the study of zeros of non-zero
polynomials in C[x], and the problem of finding zeros in Q[x] leads to the definition of algebraic
and transcendental numbers. Recently, Marques studied the set of algebraic numbers in the
form P(T)Q(T). In this paper, we generalize this result by showing the existence of algebraic
numbers which can be written in the form P1(T)Q1(T) · · · Pn(T)Qn(T) for some transcendental number
T, where P1, . . . , Pn, Q1, . . . , Qn are prescribed, non-constant polynomials in Q[x] (under weak
conditions). More generally, our result generalizes results on the arithmetic nature of zw when
z and w are transcendental.
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1. Introduction

The name “transcendental”, which comes from the Latin word “transcenděre”, was first used for
a mathematical concept by Leibniz in 1682. Transcendental numbers in the modern sense were defined
by Leonhard Euler (see [1]).

A complex number α is called algebraic if it is a zero of some non-zero polynomial P ∈ Q[x].
Otherwise, α is transcendental. Algebraic numbers form a field, which is denoted by Q. The transcendence
of e was proved by Charles Hermite [2] in 1872, and two years later Ferdinand von Lindeman [3]
extended the method of Hermite‘s proof to derive that π is also transcendental. It should be noted
that Lindemann proved the following, much more general statement: The number eα, where α is any
non-zero algebraic number, is always transcendental (see [4]). In 1900, Hilbert raised the question of
the arithmetic nature of the power α β of two algebraic numbers α and β (it was the seventh problem in
his famous list of 23 problems, which he presented at the International Congress of Mathematicians in
Paris). The complete solution to this problem was found independently by Gel’fond and Schneider
(see [5], p. 9) in 1934. Their results can be formulated as the following theorem (the ideas of the
Gel’fond–Schneider proof were used partially in, e.g., [6–8]).

Theorem 1. The Gel’fond–Schneider Theorem: Let α and β be algebraic numbers, with α 6= 0 and α 6= 1,
and let β be irrational. Then α β is transcendental.

The Gel’fond–Schneider Theorem classifies the arithmetic nature of xy when both x, y are algebraic
numbers (because xy is an algebraic number when y is rational). Nevertheless, when at least one of
these two numbers is transcendental, anything is possible (see Table 1 below).
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Table 1. Possible results for the power xy when x or y is transcendental.

Value of x Class of Numbers Value of y Class of Numbers Power xy Class of Numbers

2 algebraic log 3/ log 2 transcendental 3 algebraic
2 algebraic i log 3/ log 2 transcendental 3i transcendental
ei transcendental π transcendental −1 algebraic
e transcendental π transcendental eπ transcendental

2
√

2 transcendental
√

2 algebraic 4 algebraic
2
√

2 transcendental i
√

2 algebraic 4i transcendental

In all the previous examples we have x 6= y (in fact, we used the fact that the logarithm function
is the inverse of the exponential function many times). Also, in the cases in which x and y are both
transcendental (in the previous table), these numbers are possibly (though it’s not proved) algebraically
independent. So, what happens if we consider numbers of the form xx with x transcendental? Is it
possible that some of these numbers are algebraic? We remark that the numbers ee and ππ are expected
(but not proved) to be transcendental. In fact, it is easy to use the Gel’fond–Schneider Theorem
to prove that every prime number can be written in the form TT for some transcendental number
T (for a more general result, see [9]). In this direction, a natural question arises: Given arbitrary,
non-constant polynomials P, Q ∈ Q[x], is there always a transcendental number T such that P(T)Q(T)

is algebraic? Note that P(T) and Q(T) are algebraically dependent transcendental numbers (so they
do not come from our table). Marques [10] showed that the answer for the previous question is yes.
More generally, he proved that for any fixed, non-constant polynomials P(x), Q(x) ∈ Q[x], the set of
algebraic numbers of the form P(T)Q(T), with T transcendental, is dense in some connected subset
of either R or C. A generalization of this result for rational functions with algebraic coefficients
was proved by Jensen and Marques [11]. However, the previous results do not apply, e.g., to prove
the existence of algebraic numbers which can be written in the form (T2 + 1)T · TT2+T+1, with T
transcendental.

In this paper, we will solve this kind of problem completely by proving a multi-polynomial
version of the previous results. The following theorem states our result more precisely.

Theorem 2. Let P1, . . . , Pn, Q1, . . . , Qn ∈ Q[x] be non-constant polynomials, such that the leading coefficients
of the Qj’s have the same sign. Then the set of algebraic numbers of the form P1(T)Q1(T) · · · Pn(T)Qn(T), with
T transcendental, is dense in some open subset of the complex plane. In fact, this dense set can be chosen to
be {Q(1 + p

√
2) : Q ∈ K}, for some dense set K ⊆ Q(

√
−1)\{0}, K ∩Q = ∅, and any prime number

p > 2 · ( max
1≤j≤n

{deg Qj})!.

The proof of the above theorem combines famous classical theorems concerning transcendental
numbers (like the Baker’s Theorem on linear forms in logarithms and the Gel’fond–Schneider Theorem)
and certain purely field-theoretic results. We point out that, in a similar way, we can prove Theorem 2
for rational functions with algebraic coefficients, but we choose to prove this simpler case in order to
avoid too many technicalities, which can obscure the essence of the main idea.

2. Proof of Theorem 2

2.1. Auxiliary Results

Before we proceed to the proof of Theorem 2, we will need the following three lemmas. The first
two lemmas come from the work of Baker on linear forms of logarithms of algebraic numbers (see [5],
Chapter 2):

Lemma 1 (Cf. Theorem 2.4 in [5]). If α1, α2, . . . , αn are algebraic numbers other than 0 or 1, β1, β2, . . . , βn are
algebraic with 1, β1, β2, . . . , βn linearly independent over Q, then α

β1
1 α

β2
2 · · · α

βn
n is transcendental.
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Lemma 2 (Cf. Theorem 2.2 in [5]). Any non-vanishing linear combination of logarithms of algebraic numbers
with algebraic coefficients is transcendental.

Let F be a family of polynomials. Hereafter, we will denote byRF the set of all the zeros of the
polynomials in F . The last of these lemmas is a purely field-theoretical result.

Lemma 3. Let n be any positive integer and let F be a family of polynomials in Q[x] for which there exists
a positive integer ` such that all polynomials in F have degree at most `. Then for all prime numbers p > `!,
the following holds:

(1 + p√2)n /∈ Q(RF ). (1)

Proof of Lemma 3. Set F = {F1, F2, . . .}, Kn = Q(RF1···Fn) and tn = [Kn : Q]. Since Kn ⊆ Kn+1,
then tn+1 = `ntn, for some positive integer `n. Note that `n = [Kn+1 : Kn] = [Kn(RFn+1) : Kn] ≤
(deg Fn+1)! ≤ `!. We claim that (1 + p

√
2)n /∈ Q(RF ) for all integers n ≥ 1. For the contrary, there exist

positive integers m and s such that (1 + p
√

2)m ∈ Ks. Then the degree of (1 + p
√

2)m (which is p)
divides ts. However, ts = `s−1 · · · `1t1 and p > `! ≥ maxj∈[1,s−1]{`j, t1}, which gives an absurdity.
This completes the proof.

With these lemmas in hand, we can proceed to the proof of our main outcome.

2.2. The Proof

In order to simplify our presentation, we use the familiar notation [a, b] = {a, a + 1, . . . , b},
for integers a < b.

Of course, it is enough to prove our theorem for the case that P1, . . . , Pn are multiplicatively
independent. For that, we take an open, simply connected subset Ω of C, such that Pj(x) /∈ {0, 1} for
all x ∈ Ω and j ∈ [1, n]. Choosing, for example, the principal branch of the multi-valued logarithm
function, the function f (x) := ∏n

j=1 Pj(x)Qj(x) is well defined and analytic in Ω. Moreover, f (x) is
a non-constant function. In fact, if f were constant then f ′(x) = 0 in Ω and so

n

∑
j=1

Q′j(x) log Pj(x) +
n

∑
j=1

Qj(x)P′j (x)

Pj(x)
= 0, (2)

for all x ∈ Ω. We claim that g(x) := ∑n
j=1 Qj(x)P′j (x)/Pj(x) is not the zero function in Ω. In fact,

otherwise G(x) := P1(x) · · · Pn(x)g(x) would be the zero polynomial, but the formal polynomial G has
degree ≤ t := maxj∈[1,n]{m1 + · · ·+ mn + tj − 1}, where for all j ∈ [1, n], mj and tj are the degree of Pj
and Qj, respectively. Now, if ti1 = · · · = tis = maxj∈[1,n]{tj}, we get the relation ∑s

j=1 mij bij = 0 (the
coefficient of xt in G must be zero), where for all j ∈ [1, n], bj is the leading coefficient of Qj. However
∑s

j=1 mij bij 6= 0, since mj > 0 and bj have the same sign. This gives a contradiction. Thus, there exists

β ∈ Ω ∩Q such that g(β) 6= 0. Substituting then x = β in (2), we have that ∑n
j=1 Q′j(β) log Pj(β) is

a nonzero algebraic number which contradicts Lemma 2. Hence f is a non-constant function.
Since f is a non-constant analytic function and Ω is an open connected set, f (Ω) is an open

connected subset of C. Let F be the family of polynomials {Qi(x)− d : i ∈ [1, n], d ∈ Q} ∪ {x2 + 1}.
Clearly, each polynomial in F has degree ≤ 2` := 2 max{deg Q1, . . . , deg Qn}. Thus, the conditions
to apply Lemma 3 are fulfilled. Hence, for p > 2`!, we have that the set P := {r(1 + p

√
2) : r ∈

Q(
√
−1)\{0}} forms a dense subset of C and no positive integer power of its elements lies in Q(RF ).

Since f (Ω) is open, f (Ω) ∩ P is dense in f (Ω). Now, it remains to prove that every number in this
intersection can be written in the desired form. For that, let α := r(1 + p

√
2) ∈ f (Ω) ∩ P , then

α = f (T) =
n

∏
j=1

Pj(T)
Qj(T), (3)
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where T ∈ Ω. Therefore, it is enough to prove that T is a transcendental number. To get a contradiction,
suppose the contrary; i.e., that T is algebraic. Then P1(T), . . . , Pn(T), Q1(T), . . . , Qn(T) are also
algebraic numbers. By the choice of Ω, Lemma 1 ensures the existence of a nontrivial Q-relation
among 1, Q1(T), . . . , Qn(T) (this implies, in particular, that the degree of T is at most `). Without loss
of generality we can assume that anQn(T) = a0 + ∑n−1

j=1 ajQj(T), where aj is an integer, with an > 0.
Therefore, identity (3) becomes

αan = Pn(T)a0 (P1(T)an Pn(T)a1)Q1(T) · · · (Pn−1(T)an Pn(T)an−1)Qn−1(T) .

Note that αan Pn(T)−a0 is an algebraic number and Pj(T)an Pn(T)aj 6= 0 for j ∈ [1, n− 1]. We claim
that Pj(T)an Pn(T)aj 6= 1 for some j ∈ [1, n− 1]. In fact, otherwise we would have αan = Pn(T)a0 ∈ Q(T)
and so (1 + p

√
2)an ∈ Q(T,

√
−1) has degree at most 2`. However, this gives an absurdity since the

degree of (1 + p
√

2)an is p > 2`!. Thus, sometimes Pj(T)an Pn(T)aj is an algebraic number different
from 0 and 1, so we can apply Lemma 1 again to get a Z-relation bn−1Qn−1(T) = b0 + ∑n−2

j=1 bjQj(T),
where bj is an integer, with bn−1 > 0. Analogously, one can iterate this process n− 1 times to conclude
that

αq = A(T) (P1(T)c1 · · · Pn(T)cn)Q1(T) , (4)

where A(T) ∈ Q(P1(T), . . . , Pn(T)) and q, cj’s ∈ Z, with q > 0. If ∏n
j=1 Pj(T)

cj = 1, we would
arrive at the same absurdity as before since Q(P1(T), . . . , Pn(T)) ⊆ Q(T). Thus ∏n

j=1 Pj(T)
cj ∈

Q\{0, 1}, so by the Gel’fond–Schneider Theorem we deduce that Q1(T) is a rational number, say
r/s, with some integers r and s, s > 0. Hence, T belongs to RQ1(x)−r/s ⊆ RF . But then αqs =

A(T)sP1(T)rc1 · · · Pn(T)rcn (see (4)) and thus (1 + p
√

2)qs ∈ Q(RF ), contradicting the choice of p in
Lemma 3. In conclusion, T must be transcendental, and this completes the proof.

3. Conclusions

In this paper, we use analytic (complex analysis), algebraic (Galois’ extensions and symmetry)
and transcendental tools (Baker’s theory) to prove, in particular, the existence of infinitely
many algebraic numbers of the form P1(T)Q1(T) · · · Pn(T)Qn(T), where T is a transcendental
number and P1, . . . , Pn, Q1, . . . , Qn are previously fixed rational polynomials (under some weak
technical conditions).
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