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Abstract: Extensive agricultural development mode increases the climate problem caused by 

carbon emissions, thus restricting the development of agricultural economy. Under this 

background, this paper studies the relationship between climate change and the transformation 

of agricultural development mode from the perspective of carbon emissions and agricultural 

total factor productivity (TFP). Based on the Regional Panel Data of 1995-2016, this paper uses 

the co-integration model and error correction model to explore the impact of long-term and 

short-term carbon emissions on agricultural TFP, and further analyzes the impact mechanism. 

The research shows that carbon emissions from diesel fuel, irrigation and pesticide for 

agriculture mainly restrain agricultural TFP by restraining agricultural technology efficiency 

(TEC) in the long and short term; agricultural film carbon emissions only have the same effect 

in the short term; in the short term, carbon emission of agricultural machinery restrains 

agricultural TFP by restraining TP. In the long and short term, fertilizer carbon emissions will 

promote the growth of agricultural TFP by improving TEC. There is a short-term reverse 

correction mechanism between them, and the short-term deviation will recover more quickly. 

This paper puts forward suggestions on low-carbon circular agriculture, adjustment of 

agricultural production structure and promotion of agricultural modernization. 

Keywords: carbon emission; agricultural total factor productivity; co-integration model; 

error correction model 

JEL Classification: Q54 

1. Introduction 

The issue of climate change is accompanied by the way of human development. It is a 

necessary product of mankind's transformation of nature and social activities. In turn, climate 

change will also affect and restrict the way of human development. Especially agriculture is 

very sensitive to climate change, so it is vulnerable to the potential impact of changes in climate 

conditions. The production methods in the process of agricultural development are one of the 

important reasons for climate change. Extensive farming methods, excessive use of agricultural 

industrial products such as chemical fertilizers and pesticides, and the abuse of agricultural 

energy caused by "modern agriculture" all emit large amounts of greenhouse gases. The 

increase of greenhouse gas emissions, such as methane, nitrogen oxides and carbon dioxide, 

gradually accumulates from quantity to quality, affecting the global climate change. Climate 

changes such as rising temperatures, changes in precipitation, changes in glaciers, and extreme 

weather will restrict the high-quality growth of the agricultural economy by affecting the 
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layout of the agricultural planting industry, and the output and quality of agricultural 

products. To improve the impact of climate change, the fundamental way to achieve high-

quality development of agricultural economy lies in the transformation of agricultural 

development methods. The transformation of the agricultural development model means the 

transformation from extensive to intensive, from quantitative to qualitative, and transforms 

agricultural economic growth from an increase in factor input to an increase in agricultural 

total factor productivity. Therefore, to study the relationship between climate change and the 

transformation of agricultural development mode, we must first study the relationship 

between agricultural carbon emissions and agricultural total factor productivity. 

Agricultural TFP has been widely concerned by scholars at home and abroad. They use 

different measurement methods to analyze the TFP and its influencing factors of different 

regions and varieties of crops (Mead, 2003; Wen, 1993; Chen, Ma, Che et al., 2020). The 

calculation methods of agricultural total factor productivity can be divided into Solow residual 

method, non-parametric data envelope analysis and typical SFA stochastic frontier production 

model. On the basis of C-D production function, Solow (1957) proposed that capital, labor and 

technical efficiency are the driving forces of economic growth, and constructed CES production 

function. On this basis, some scholars use the Solow residual method and its extended model 

to calculate the total factor productivity (Huilong & Lei, 2018; Schultz & Abramovitz, 1956). 

However, it has strong constraints, Hicks neutrality and constant returns to scale. It ignores the 

existence of technical efficiency, only regards the total factor growth rate as the result of 

technological progress. Due to the strong uncertainty of natural factors such as climate change, 

some scholars use stochastic production frontier function to measure agricultural TFP (Liu & 

Zhang, 2017; Brümmer et al., 2006; Kumbhakar & Lovell, 2000). This method considers the 

influence of random factors, which is more in line with the background of climate change. The 

advantage of nonparametric data envelopment analysis is that it does not need to determine 

the specific production function and is not affected by the dimension of input-output variables. 

It is suitable for the calculation of a large amount of data. The DEA method originates from 

the analysis of Farrell (1957). Through the development of Charnes (1978), a more mature 

analysis paradigm has been formed. Tone (2002) systematically explains such methods. This 

method is applied to the calculation of TFP (Liu et al., 2016; Coelli & Rao, 2003; Fare et al., 1994). 

Climate change is an important factor affecting agricultural TFP. Zhong and Jiang (2019) 

believe that factors such as annual total precipitation, mean temperature in growing season, 

and evaporation intensity have significant negative effects on regional agricultural total factor 

productivity. Jin and Kan (2013) found that natural disasters in the agricultural production 

environment can restrain agricultural TFP by affecting technological progress. Based on the 

perspective of carbon emissions, the literature studying the impact of climate change on 

agricultural development mode mainly includes agricultural carbon emissions as an 

unexpected output into the productivity calculation, so as to obtain agricultural green 

productivity, and then compare with the traditional agricultural total factor productivity. 

Scholars have found that environmental pollutants such as agricultural carbon emissions can 

inhibit agricultural total factor productivity, and the path of impact includes technological 

progress and technical efficiency (Wang et al., 2019; Zhan et al., 2019; Pan Dan, 2014). Climate 
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change and agricultural development is a two-way interactive mechanism. The relationship 

between economic development and carbon emissions presents an inverted U curve. With the 

increase of production investment, carbon emissions increased. When the economy develops 

to a certain scale, high-quality economic development model will inhibit agricultural carbon 

emissions (Li et al., 2011; Zhang et al., 2014). Xu and Song (2010) obtained the same effect in 

central and eastern China by using the Co-integration Model. The Co-integration Model reflects 

the long-term stable relationship between variables. Zhao and Li (2011) used the Co-integration 

Model to find that economic growth will bring about an increase in carbon emissions, and an 

increase in carbon emissions will also bring about economic growth. 

There are still the following deficiencies, agricultural carbon emissions include agricultural 

planting and animal husbandry and other carbon emissions. Greenhouse gases are emitted 

from chemical fertilizer, pesticide, agricultural film, machinery, irrigation and other carbon 

sources in agricultural planting industry. However, the existing literature does not discuss the 

impact of specific carbon emissions on agricultural total factor productivity and the path. 

On the other hand, high quality agricultural development will inhibit agricultural carbon 

emissions. Climate change and agricultural development mode is a two-way interaction 

mechanism. So this paper uses the Co-integration Model to study the long-term relationship 

between climate change and the transformation of agricultural development mode, and uses 

the error correction model to explore the short-term impact. In view of this, this paper intends 

to build a Co-integration Model of carbon emissions from various carbon sources of 

agricultural planting industry and agricultural total factor productivity and analyze the impact 

of carbon emissions from various carbon sources on agricultural total factor productivity for 

a long time and the impact path. If there is a long-term equilibrium relationship, build a Vector 

Error Correction Model to study whether there is any deviation in the short-term and the 

correction speed to restore to the long-term equilibrium. 

Huang and Mi (2011) divided the sources of carbon emissions from agricultural 

production into five parts: agricultural industrial products input, agricultural energy, planting 

emissions, aquaculture emissions and organic waste. By quantifying the agricultural carbon 

footprint, they found that the most important carbon emissions are from the industrial products 

(chemical fertilizer, pesticide, agricultural film, etc.) input in the agricultural production 

process and the use of agricultural energy. Therefore, in order to study the impact of 

agricultural carbon emissions on agricultural total factor productivity, it is necessary to analyze 

the input of agricultural industrial products and the carbon emissions of agricultural energy. 

Due to the impact of traditional "agricultural modernization", farmers only care about output 

but not quality, which will deepen the mechanization and chemistry of agricultural production. 

In the process of mechanization, it is inevitable to increase agricultural energy consumption 

such as electricity, oil and coal, and increase carbon emissions. On the other hand, the 

production, use and treatment of chemical fertilizer, pesticide and agricultural film will directly 

or indirectly generate carbon emissions. Ammonia will escape into the atmosphere during the 

application of chemical fertilizer, followed by the nitration and denitrification process of 

nitrogen in the soil, which will produce greenhouse gases. In addition, due to the extensive use 

of chemical fertilizer, the natural properties of the soil have been changed and the process of 
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carbon emission has been accelerated. The use of pesticide such as weedicide, pesticide, and 

fungicide will also change the respiratory rate of crops and other factors to increase greenhouse 

gas emissions. In order to protect the seedlings, the agricultural land needs to be covered with 

film before the crops are planted, the residual agricultural film will change the nature and 

structure of the soil, thus accelerating carbon emissions. The increase of agricultural carbon 

emissions has brought about climate changes such as temperature rise, precipitation change 

and natural disasters caused by greenhouse effect. Agricultural production is more sensitive to 

the impact of climate change, so the increase in carbon emissions caused by climate change will 

certainly have a certain impact on the agricultural economy. The increase of carbon emissions 

from various carbon sources has positive and negative effects on the agricultural economy. On 

the one hand, the increase of carbon emission from agricultural sources means the deepening 

of agricultural mechanization and chemistry, which will undoubtedly promote economic 

growth. On the other hand, the increase in carbon emissions has also intensified the climate 

change caused by environmental pollution, thus affecting agricultural production. From the 

perspective of positive effects of agricultural carbon emissions. The use of agricultural 

machinery can improve the production efficiency of farmers, and the use of chemical fertilizer, 

pesticide and agricultural film can protect the growth and development of crops. With the 

continuous improvement of technology, the research and development of new equipment and 

the upgrading of agricultural industrial inputs can improve the total factor productivity of 

agriculture by promoting technological progress. The negative effect of agricultural carbon 

emissions is reflected in the fact that climate change will affect agricultural total factor 

productivity by affecting agricultural planting systems, regions, types of crops and agricultural 

production habits. Therefore, the increase of agricultural carbon emissions has positive and 

negative effects. It is of great significance to quantify the positive and negative effects of specific 

carbon source emissions and analyze the impact path to understand the impact of climate 

change on agricultural development. 

2. Methodology 

This paper calculates agricultural carbon emissions by using the input of key elements 

in national agricultural planting production, and then uses the co-integration model to 

analyze the long-term and short-term relationship between agricultural total factor 

productivity and carbon emissions from various agricultural carbon sources. 

2.1 Calculation Method of Agricultural Carbon Emission 

Agricultural carbon emissions are greenhouse gases formed in the process of agricultural 

production activities, including carbon emissions caused by the use of pesticide in 

agricultural production; the production of fertilizer and fertilizer; the production of 

agricultural film and membrane; the inflow of organic carbon in the soil into the air during 

the ploughing and diesel fuel consumed during the mechanized production. Computing 

formula: 

𝐸 = ∑ 𝐸𝑖 = ∑ 𝑇𝑖 ∗ 𝛿𝑖 (1) 
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where represents the total amount of carbon emissions, ∑ 𝐸𝑖 represents the sum of carbon 

emissions from different source, 𝑇𝑖  represents the amount of various carbon sources, 𝛿𝑖 

represents the corresponding emission coefficient of various carbon sources. According to 

the relevant literature (IREEA, 2016; ORNL, 2016; Li et al., 2011; IPCC, 2006; West & Marland, 

2002), the coefficients of different agricultural carbon sources are shown in Table 1: 

Table 1. Carbon emission sources and factor 

sources factor sources factor 

chemical fertilizer 0.8956 kg c/kg diesel oil 0.5927 kg c/kg 

pesticide 4.9341 kg c/kg irrigation 266.48 kg c/hm2 

agricultural film 5.18 kg c/kg   

 

The calculation of carbon emission from agricultural machinery is based on the 

calculation formula：Ee = Ae * D + We * F, where Ae representative planting area, We 

represents the total power of agricultural machinery D = 16.47 kg c/hm2, F = 0.18 kg c/kW. In 

this paper, carbon dioxide emission is used as a variable to measure carbon emissions. 

According to the mass balance method, the formula for converting carbon into carbon dioxide 

is: 𝑐𝑜2 = 𝑐 ×
44

12
. 

2.2 Co-integration Model and Vector Error Correction Model 

Cointegration test, also known as EG cointegration test. In 1987, Engle and Granger 

proposed to determine whether there is a long-term equilibrium relationship between 

unstable sequences. Definition of Cointegration Relation: Set the random sequence  𝑥𝑖 to 

contain only components of order D single integers, record as 𝑥𝑖~𝐼(𝑑).Assume there is a 

non-zero vector 𝛽can satisfy random vector 𝑌𝑖 = 𝛽𝑥𝑖~𝐼(𝑑, 𝑏), we can say that 𝑥𝑖  is b,d order 

cointegration, record as 𝑥𝑖~𝐶𝐼(𝑑, 𝑏) , 𝛽 is cointegration vector. In particular, 𝑌𝑖 and 𝑥𝑖 are 

random variables,  𝑌𝑖 , 𝑥𝑖~𝐼(1) , 𝑌𝑖 = 𝑘0 + 𝑘1𝑥𝑖~𝐼(0) , then called   𝑌𝑖 , 𝑥𝑖  areco-

integrated, 𝑘0、𝑘1 is the co-integration coefficient. 

It seems that there is a long-term equilibrium among some variables obtained through 

the co integration test, but it is not the case. It is also normal for some variables with stable 

co-integration relationship to fail to reach the equilibrium in the short term. Therefore, we 

need to use error correction model to make up for this defect. The specific method of error 

correction model is to combine the short-term relationship with the long-term and medium-

term data and correct the part that cannot reach the equilibrium state. It can be defined as: 

assuming that x and y are single integral sequences of the same order, if there is a co-

integration relationship between x and y, we can use the Vector Error Correction Model to 

reflect this short-term relationship: 

𝑦𝑡 = 𝑎 + 𝛿1𝑦𝑡−1 + 𝛽0𝑥𝑡 + 𝛽1𝑥𝑡−1 + 𝑢𝑡 (2) 

∆𝑦𝑡 = 𝑎 − (1 − 𝛿1)𝑦𝑡−1 + 𝛽0∆𝑥𝑡 + (𝛽0 + 𝛽1)𝑥𝑡−1 + 𝑢𝑡 (3) 

∆𝑦𝑡 = 𝛽0∆𝑥𝑡 − (1 − 𝛿1)(𝑦𝑡−1 − 𝑘0 − 𝑘1𝑥𝑡−1) + 𝑢𝑡 (4) 
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𝑘0 =
𝛼

1−𝛿1
, 𝑘1 =

𝛽0+𝛽1

1−𝛿1
, Formula (4) is called first order error correction model.  𝛽0  is the 

influence parameter; (1 − 𝛿1) is feedback effect; 𝑘0, 𝑘1 is the long-term reflection coefficient. 

It is not difficult to see that the specific approach of the model will separate the short-term 

impact from the long-term impact in the explained variables, and then clearly and intuitively 

reflect how the short-term fluctuations affect the co integration relationship between different 

variables. Therefore, the co-integration theory and error correction model not only help us in 

the selection of variables, but also help us to determine the relationship between variables. 

2.3 Data Source and Variable Selection 

Based on previous literature studies and considering the requirements of sample 

availability and timeliness, the panel data variables of China from 1995 to 2016 are selected 

as follows. 

Dependent variables. Total Factor Productivity of Agriculture (TFP), Technical efficiency 

index (TEC), Technology progress index (TP). Wang Junyang and Xiuyun (2019) use the 

classic non parameter DEA-Malmquist index to calculate the national and sub regional 

agricultural TFP, technical efficiency index (TEC) and technical progress index (TP) through 

the added value of the first industry, the number of employees in the first industry, the 

planting area of crops, the converted net amount of chemical fertilizer and the total power of 

agricultural machinery. This paper refers to their calculated results. 

Core explanatory variables. Carbon dioxide emissions from inputs of various elements 

in agricultural production activities, including Carbon emission of chemical fertilizer 

(fertilizerp), Carbon emissions of pesticides (pesticidep), Carbon emission of agricultural 

plastic film (filmp), Mechanical carbon emissions (machinep), Carbon emission of diesel oil 

(Oilp) and Carbon emissions of agricultural irrigation (irrp). The calculation of carbon 

emission is based on such indexes as total power of agricultural machinery/10,000 kW, plastic 

film usage for agriculture/ton, diesel oil usage for agriculture/10,000 tons, pesticide 

usage/10,000 tons, effective irrigation area/1,000 hectares, and purified fertilizer application 

for agriculture /10,000 tons. Calculate the carbon emissions by 2.1. 

Control Variables. According to the previous literature research, the following variables 

that have an impact on agricultural TFP are selected as the control variables. The fixed asset 

investment amount of rural households/billion yuan (fi) and the number of employees in 

agriculture, forestry, animal husbandry and fishery/10,000 (labor), these 2 indicators reflect 

the level of capital and labor input in agricultural production in various regions. Industry, 

this indicator is measured by the ratio of industrial added value of each region to the regional 

GDP. The larger the ratio, the higher the degree of industrialization. The level of open(open) 

is measured by the number of foreign-invested enterprises in each region. Agricultural 

electricity (electricity), which is measured by rural electricity consumption per 100 million 

kwh, also affects the total factor productivity of agriculture. 

The above data are from China research data service platform (CNRDS) Regional 

Economic Research (CRED), China Statistical Yearbook and China Rural Statistical Yearbook. 

In order to eliminate the effect of the variance, we carry out natural logarithm transformation 
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on the absolute variables such as open, electricity, fi, labor, pesticidep, Oilp, irrp, filmp, 

fertilizerp and machinep, and standardize the independent variables to eliminate the 

dimensional effect. 

3. Results 

This paper attempts to study the relationship between agricultural carbon emissions and 

total factor productivity by building a long-term Co-integration Model. This requires first 

performing the unit root (ADF) test of each variable and then the cointegration test to 

determine the long-term relationship model between each variable on the premise that each 

component has the same order sequence. Since TFP is also affected by short-term fluctuations 

in carbon emissions, Vector Error Correction Model need to be constructed to determine 

whether corrective mechanisms exist. 

3.1. Panel Unit Root Test for Each Variable 

Only when the variables introduced into the model reach the same level of single 

integration, the co-integration test can be carried out. We used LLC test (2002), IPS test (2003) 

and Breitung test (2000, 2005) to conduct panel unit root test for each variable. The original 

assumption of the tests is that the variable has unit root process and belongs to non-stationary 

series. The reserve assumption of IPS test is that a certain proportion of individuals are 

stationary series, while the reserve assumption of LLC test (2002) and Breitung test is that all 

individuals are stationary series. For the 3 results, whether the variable is stable is judged by 

voting. The test result with the largest number of votes is the final result. The specific 

inspection results are shown in Table 2. 

Table 2. Panel stability test result 

Variable 
Original sequence First difference series 

LLC IPS Breitung LLC IPS Breitung 

lnopen 1.9682 0.6407 -0.7571 -4.3181*** -3.6620*** -1.9901** 

lnelectricity 0.8958 1.6204 -1.2208 -6.9916*** -6.3356*** -1.8349** 

lnfi 0.9136 0.3691 1.5001 -9.3840*** -6.9165*** -1.0029 

lnlabor 0.7362 2.2085 -0.2578 -5.9556*** -7.4676*** -1.6789** 

industry 0.2128 0.9157 1.2514 -6.6757*** -7.5598*** -0.4483 

lnpesticidep 0.7142 2.9601 1.2520 -8.8024*** -8.9973*** -1.7801** 

lnoilp 1.3158 1.1584 -0.4711 -6.1860*** -5.3366*** -2.0663** 

lnirrp -2.7952*** -0.3711 2.1530 -5.4343*** -4.7845*** -2.7195*** 

lnfilmp 0.5435 -0.2644 -0.1712 -5.5707*** -7.0388*** -2.0935** 

lnfertilizerp 4.5421 0.4799 0.2300 -4.9664*** -6.5711*** -1.5922* 

lnmachinep 1.7261 2.3316 1.7233 -4.4988*** -4.7558*** -1.8035** 

tfp -4.4850*** -0.7685 1.2260 -13.4825*** -12.5275*** -4.7837*** 

tp -1.3097 -5.3469*** -0.2947 -12.6374*** -11.7734*** -3.6708*** 

tec -0.5929 -1.5927* 0.4241 -5.4496*** -9.9811*** -3.7761*** 

2 The superscript ***, **, * are significant at the level of 1%, 5%, and 10%, respectively. 

To sum up, the original sequence of each variable is not stationary, while their first-order 

difference sequence is stationary. Each variable is integrated of order one, i.e. the I (1) process. 

Since each sequence belongs to the same order single integer sequence, we can perform long-

term co-integration analysis between variables. 
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3.2 Cointegration Test for Total Samples 

This paper uses Kao test (1999) and Pedroni test (1999, 2004) to test whether there is a 

long-term cointegration relationship between variables. Both of these methods are panel co-

integration tests based on residuals and assume that the sections are independent. The 

original assumption of both methods is that there is no co-integration relationship for all 

individuals, while the alternative assumption is that there is co-integration relationship for 

all individuals. This paper tests the long-term cointegration relationship between different 

variables by six types of cointegration relationships. Dependent variables tfp, tp, tec and core 

explanatory variables lnpesticidep, lnoilp, lnirrp, lnfilmp, lnfertilizerp and lnmachinep form 

model 1, model 2 and model 3 respectively. Dependent variables tfp, tp, tec and core 

explanatory variables and control variables lnopen, lnelectricity, lnfi, lnlabor, industry 

constitute model 4, model 5 and model 6 respectively. The inspection results are shown in 

Table 3 below. 

Table 3. Panel cointegration test results 

Statistic Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Kao test 

DF value 

-5.8875*** 

（0.0000） 

-3.8026*** 

（0.0001） 

-9.2822*** 

（0.0000） 

-5.6898*** 

（0.0000） 

-3.6459*** 

（0.0001） 

-9.3964*** 

（0.0000） 

Pedroni test       

Panel v 
-2.4821*** 

（0.0065） 

-2.5968*** 

（0.0047） 

-2.5312*** 

（0.0057） 
— — — 

Panel rho 
1.0074 

（0.1569） 

0.1497 

（0.4405） 

0.5281 

（0.2987） 
— — — 

Panel pp 
-7.5448*** 

（0.0000） 

-8.3155*** 

（0.0000） 

-7.0675*** 

（0.0000） 
— — — 

Panel ADF 
-1.360e+15***

（0.0000） 

-8.9155*** 

（0.0000） 

-5.4093*** 

（0.0000） 
— — — 

Group rho 
1.8463** 

（0.0324） 

0.9025 

（0.1834） 

1.2624 

（0.1034） 
— — — 

Group pp 
-8.4454*** 

（0.0000） 

-10.0927***

（0.0000） 

-9.2630*** 

（0.0000） 
— — — 

Group ADF 
-4.599e+15***

（0.0000） 

-11.0363***

（0.0000） 

-6.1461*** 

（0.0000） 
— — — 

3 The superscript ***, **, * are significant at the level of 1%, 5%, and 10%, respectively. The p-value is 

in brackets. 

In the case of small samples, group ADF and panel ADF are the best in pedroni test. Due 

to the limitation of data, there are too many variables in the model after adding control 

variables, so pedroni test cannot be carried out. Therefore, the values of seven statistics in 

pedroni test of model 4, model 5 and Model 6 are not listed in the table. According to the 

results of Kao test, we reject the hypothesis that there is no co integration relationship at the 

significance level of 1%. Therefore, we can also think that the variables in model 4, model 5 

and Model 6 with control variables have cointegration relationship. In summary, the six 

models have been tested by Kao test and pedroni test, and the original hypothesis that there 

is no co integration relationship is rejected. We think that there is co integration relationship 

among variables in each model. 
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3.3 The Residual-Based Panel Fully Modified OLS (FMOLS) 

After determining that there is a co-integration relationship between variables, we used 

FMOLS for co-integration regression. Compared with OLS estimation method, FMOLS 

estimation can better solve the problems of endogeneity of variables and biased estimation 

results. Dependent variables tfp, tp, tec and core explanatory variables and control variables 

lnopen, lnelectricity, lnfi, lnlabor, industry constitute model 4, model 5 and model 6 

respectively. The estimated results are shown in Table 4. 

Table 4. FMOLS regression results 

Explanatory variables Model 4 Model 5 Model 6 

lnfilmp 
0.006419 

(0.475686) 

0.035371 

(1.421778) 

-0.027437 

(-0.984457) 

lnoilp 
-0.042155*** 

(-3.690655) 

0.099332*** 

(4.311886) 

-0.136897*** 

(-5.384061) 

lnmachinep 
-0.002718 

(-0.134199) 

-0.023887 

(-0.723819) 

0.031494 

(0.839363) 

lnirrp 
-0.232587*** 

(-9.602969) 

0.022899 

(0.579870) 

-0.242263*** 

(-5.339365) 

lnfertilizerp 
0.110299*** 

(2.961456) 

-0.146511** 

(-2.602231) 

0.274641*** 

(4.280323) 

lnpesticidep 
-0.104460*** 

(-5.717707) 

0.162924*** 

(5.433335) 

-0.263281*** 

(-7.711458) 

Control Variables YES YES YES 

R2 0.529568 0.323185 0.286022 

4 The superscript ***, **, * are significant at the level of 1%, 5%, and 10%, respectively. The t-statistic is 

in brackets. 

We can find that the carbon emission of agricultural film has no significant effect on the 

improvement of TFP. As the first largest carbon source of agricultural carbon emissions, 

chemical fertilizer has made great contribution to the growth of agriculture in China. 

However, excessive use of chemical fertilizer will also cause pollution. The coefficient of 

lnfertilizerp is 0.110299, which is significant at a significant level of 1%, indicating that the 

carbon emission of fertilizer increases by 1%, and the agricultural TFP increases by 0.110299 

units. In addition, the carbon emissions from the other 4 carbon sources will inhibit the 

growth of agricultural TFP. The effect of carbon emission from agricultural machinery 

(lnmachinep) is not significant. The coefficient of lnoilp, lnirrp, lnpesticidep are -0.042155, 

-0.232587, -0.104460, respectively, which is significant at a significant level of 1%. Its carbon 

emission increased by 1%, the agricultural TFP decreased by 0.042155 units, 0.232587 units, 

0.104460 units, respectively. Agricultural irrigation, as the second largest carbon source of 

agricultural carbon emissions, its growth trend is still rising, and has seriously affected the 

improvement of agricultural total factor productivity. How to solve the problem of irrigation 

emission reduction is the focus of current research. 

In order to further analyze the path of each carbon source affecting agricultural total 

factor productivity, this paper respectively constructs model 5 and Model 6 with agricultural 

technology progress (tp), agricultural technology efficiency (tec) and core explanatory 

variables and control variables. The results are as follows: 
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Model 5 reflects the impact of carbon emissions from various carbon sources of 

agricultural production on agricultural technological progress (TP). The coefficient values of 

lnpesticidep and lnoilp are 0.162924 and 0.099332, respectively, which are significant at a 

significant level of 1%, indicating that their carbon emissions increased by 1%, and the 

agricultural TP increased by 0.162924 and 0.099332 units, respectively. The coefficient of 

carbon emission from fertilizer (lnfertilizerp) is -0.146511, which is significant at a significant 

level of 5%. It increases by 1%, and the agricultural TP will decrease by 0.146511 units. 

Lnfilmp and lnirrp did not significantly promote the agricultural TP. The inhibition of 

agricultural machinery carbon emission (lnmachinep) was not significant. 

Model 6 reflects the impact of carbon emissions from various carbon sources of 

agricultural production on agricultural technical efficiency (TEC). The coefficient values of 

lnpesticidep, lnoilp, lnirrp and lnfertilizerp are -0.263281, -0.136897, -0.242263 and 0.274641, 

respectively, which are significant at the significant level of 1%. Inhibitory effect of lnfilmp 

on TEC is not significant. lnmachinep do not significantly promote technical efficiency. This 

indicated that the lnpesticidep, lnoilp, lnirrp could significantly inhibit the agricultural TEC, 

which increased by 1% and reduced the agricultural technical efficiency by 0.263281, 0.136897 

and 0.242263 units respectively. Lnfertilizerp will have a significant positive effect on 

agricultural technology efficiency, which will increase by 1% and agricultural TEC increase 

by 0.274641 units. 

In summary, in the long run, there are positive and negative effects of carbon emissions 

from various carbon sources on agricultural TFP, and they can be divided into technological 

progress and technological efficiency. Agricultural film carbon emissions and agricultural 

machinery carbon emissions have no significant impact on agricultural TFP, TP, TEC for a 

long time. Agricultural diesel carbon emissions, agricultural irrigation carbon emissions, and 

pesticide carbon emissions mainly restrain agricultural TFP by restraining agricultural TEC, 

while their promotion to agricultural TP slows down the degree of restraint. However, carbon 

emissions from agricultural irrigation did not significantly promote TP, which also led to the 

greatest inhibition on agricultural TFP. Chemical fertilizer carbon emission mainly promotes 

agricultural TFP by promoting agricultural TEC, while its inhibition on TP reduces the degree 

of promotion. 

3.4 Vector Error Correction Model 

The long-term equilibrium relationship between agricultural TFP and carbon sources of 

agricultural production is reflected by the previous Co-integration Model. How to correct 

short-term fluctuations around the long-term equilibrium relationship needs to be achieved 

by establishing the Vector Error Correction Model. In this paper, the regression residuals 

(ecm) of model 4, model 5 and Model 6 are calculated according to the three co-integration 

regression equations. The first-order difference sequence of agricultural TFP, TP, TEC and 

the first-order difference sequence of each agricultural carbon source carbon emission and 

control variable as well as the regression residual (ecm) constitute error correction models 7, 

8 and 9. The model regression results are shown in Table 5 below. 



CLIMATE CHANGE AND AGRICULTURAL DEVELOPMENT TRANSITION 

Table 5. Error Correction Model regression results 

Explanatory variables 
Model 7 Model 8 Model 9 

△（tfp） △（tp） △（tec） 

△（Yt-1） 
0.084375 

（1.531608） 

0.274609*** 

（15.68571） 

0.254149*** 

（13.30265） 

△（lnfilmp） 
-0.007760 

(-0.443973) 

0.169190*** 

(11.27335) 

-0.193812*** 

(-12.86921) 

△（lnoilp） 
-0.088953*** 

(-8.282938) 

0.037398*** 

(3.988770) 

-0.109907*** 

(-11.04025) 

△（lnmachinep） 
-0.049073** 

(-2.568566) 

-0.071263*** 

(-5.323341) 

0.040485*** 

(2.908704) 

△（lnirrp） 
-0.243873*** 

(-8.349004) 

0.075005 *** 

(4.042169) 

-0.306101*** 

(-14.84638) 

△（lnfertilizerp） 
0.178028*** 

(5.328472) 

-0.371455*** 

(-17.06731) 

0.568451*** 

(27.34397) 

△（lnpesticidep） 
-0.103922*** 

(-6.634281) 

0.132566*** 

(12.69320) 

-0.232114*** 

(-20.39417) 

ecm（-1） 
-1.391406*** 

（-14.49810） 

-1.593920*** 

（-54.32370） 

-1.577293*** 

（-49.65659） 

Control Variables YES YES YES 

R2 0.684020 0.732803 0.706428 

5 The superscript ***, **, * are significant at the level of 1%, 5%, and 10%, respectively. The t-statistic is 

in brackets. Y is dependent variables. 

The error correction term coefficients of model 7, model 8 and model 9 are -1.391406,    -

1.593920 and -1.577293, which are significant at the 1% significant level. It indicates that in 

the long-term equilibrium process of agricultural TFP, TP, TEC and carbon emissions from 

various carbon sources, if there is deviation fluctuation in a short time, it will deviate back to 

the equilibrium level with strong regulation efficiency, which is in line with the reverse 

correction mechanism. 

From the short-term effect analysis, except in Model 7, the carbon emission coefficient of 

agricultural film is not significant, the carbon emission coefficient of machinery is significant 

at a significant level of 5%, the other core explanatory variables are significant at a significant 

level of 1%. The results show that in the short term, agricultural film carbon emissions, 

agricultural diesel emissions, agricultural irrigation carbon emissions, and pesticide carbon 

emissions will inhibit agricultural TFP by suppressing agricultural TEC, while its promotion 

on TP will slow down this effect. However, compared with the inhibition, the carbon 

emission of agricultural film has a greater promotion on TP, so its inhibition on agricultural 

TFP is not significant. Agricultural machinery carbon emissions can inhibit agricultural TFP 

by inhibiting TP, while the improvement of TEC slows down the degree of inhibition. Carbon 

emissions from fertilizers promote the improvement of agricultural TFP by promoting TEC, 

while its inhibition on TP weakens the promotion. 

 

4. Discussion and Conclusions 

This paper explores the relationship between climate change and the transformation of 

agricultural development mode from the perspective of carbon emissions and agricultural 
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total factor productivity. Based on the Regional Panel Data of China from 1995 to 2016, the 

long-term cointegration model and error correction model of agricultural carbon emission 

and agricultural total factor productivity are constructed. Three conclusions can be drawn:(1) 

There is a long-term equilibrium relationship between the carbon emissions of pesticide, 

chemical fertilizer, agricultural irrigation, diesel and agricultural TFP. Agricultural carbon 

emissions, agricultural diesel emissions and agricultural irrigation carbon emissions will 

inhibit the growth of agricultural total factor productivity, and the degree of suppression 

from large to small is irrigation carbon emissions, pesticide carbon emissions and agricultural 

diesel carbon emissions in turn. Carbon emission from chemical fertilizer will promote the 

growth of agricultural TFP. (2) Further analysis of the impact mechanism shows that 

agricultural diesel carbon emissions, agricultural irrigation carbon emissions, pesticide 

carbon emissions mainly inhibit agricultural TFP by inhibiting TEC, but its promotion on 

agricultural TP has slowed down the degree of inhibition. Increased carbon emissions from 

chemical fertilizers will promote the growth of agricultural TFP by increasing TEC, but its 

negative effect on TP will reduce the degree of promotion. It is consistent with the conclusion 

of Wang et al. (2019), they believe that the increase of carbon emission intensity will lead to 

the decrease of the growth rate of green TFP through the expansion of the ineffective rate of 

production technology. In this article, the impact of the carbon source on the TFP was 

discussed in detail.(3)Through the error correction model, it can be found that there is a 

short-term reverse correction mechanism between carbon emission from each carbon source 

and agricultural TFP, TP,TEC which will recover faster after short-term deviation. In the short 

term, agricultural membrane carbon emissions, agricultural diesel emissions, agricultural 

irrigation carbon emissions, and pesticide carbon emissions will inhibit agricultural TFP by 

suppressing agricultural TEC, while its promotion on agricultural TP has slowed down the 

degree of suppression. The carbon emission of agricultural machinery will inhibit the 

agricultural TFP by restraining TP, while it will slow down the degree of suppression to the 

improvement of TEC. The carbon emission of chemical fertilizer will promote the 

improvement of agricultural TFP by promoting the improvement of TEC, while its 

suppression on TP weakens the role of promotion.  
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