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Abstract. The study of structure of different markets haven’t been finished yet. 

Even such a well-known concept as oligopoly can be described by different 

models with different assumptions and with different values of parameters. The 

aim of this paper is to consider a nonlinear inverse demand function in Cournot 

duopoly model. Provided there is a sufficiently large proportion between costs 

of the two firm it is possible to observe nonlinear phenomena such as 

bifurcation of limit values of production or deterministic chaos. To prove a 

sensitive dependence on initial condition, that accompanies deterministic chaos, 

the concept of Lyapunov exponent is used. We also discuss that the particular 

values of parameters are not important for the discussion about the mentioned 

nonlinear phenomena but that their possible presence is worth to know. 
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1 Introduction 

One of the effects of globalization is that there emerge very rich and powerful 

corporations in the economic world. Such, usually multinational, companies of 

considerable size can have sufficiently influence to determine prices at a particular 

market. In consequence of this structure a trade can be completely controlled by 

several firms. This is the reason why oligopoly structure markets and their different 

models are studied and modified again, [2, 9, 11, 7, 8]. It is well known that oligopoly 

markets consider a few producers that produce the same good or goods that are 

perfect substitutes. Each company must consider not only the demand of market, but 

also the actions of the competitors, the property that is known as interdependence. In 

this paper we restrict to the case of market with two companies that is called duopoly, 

[3]. In contrast of the classical Cournot duopoly game it is considered a nonlinear 

inverse demand function. These problems are studied at [10] and [6]. In this paper we 

consider similar properties as in [9].   

2 Model 

First we briefly remind a classical model of oligopoly, [5, 12], and in particular we 

present Cournot duopoly assumptions, [3]. Then we introduce a special nonlinear 



 

 

demand function, [10], that allows us to present some complex phenomena of 

duopoly game.  

 

2.1 Fundamental Principles of Cournot Oligopoly Model 

Let 𝑛, 𝑛 ∈  𝑁0, be the number of companies at the given market. Denote 𝐷 =
{1,2, … , 𝑛} a finite set and let 𝐶𝑖, 𝑖 ∈  𝐷, be the company that produce the 

homogeneous output 𝑞𝑖(𝑡) at the given time period 𝑡, 𝑡 ∈  𝑁0. All companies make 

plans for their production 𝑞𝑖(𝑡 + 1) in the next time period in order to maximize their 

expected profit 𝑃𝑖  or expected utility. Profit of each companies depends on the price 

𝑝(𝑡 + 1) at which the good is sold in period 𝑡 + 1 and this price depends on the total 

supply 𝑄(𝑡) = ∑ 𝑞𝑗(𝑡)𝑗∈𝐷  according to a given inverse demand function 

𝑝(𝑡 + 1) = 𝑝𝐷[𝑄(𝑡)]. (1) 

To simplify the further consideration we introduce the following notation  

𝑄𝑖(𝑡) = ∑ 𝑞𝑗(𝑡) = 𝑄(𝑡) − 𝑞𝑖(𝑡)

𝑗∈𝐷∖{𝑖}

, (2) 

that represents the total output of the rest of the industry expect for the firm 𝐶𝑖 at the 

period 𝑡. Notice, that the relation 𝑄(𝑡) = 𝑞𝑖(𝑡) + 𝑄𝑖(𝑡) is valid for all 𝑖 ∈  𝐷. The 

profit 𝑃𝑖  of company 𝐶𝑖 can be now expressed as  

𝑃𝑖(𝑞𝑖(𝑡), 𝑄𝑖(𝑡)) = 𝑞𝑖(𝑡) ⋅ 𝑝𝐷[𝑞𝑖(𝑡) + 𝑄𝑖(𝑡)] − 𝑐𝑖(𝑡) ⋅ (𝑞𝑖(𝑡), 𝑄𝑖(𝑡)), (3) 

where 𝑐𝑖(⋅) is the cost function of company 𝐶𝑖. Moreover the production for the next 

period 𝑡 + 1 of the company 𝐶𝑖 can be found as a solution of the following 

optimization problem    

𝑞𝑖(𝑡 + 1) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥∈𝑋𝑖

𝑃𝑖(𝑥, 𝑄𝑖
𝑒(𝑡 + 1)), (4) 

where 𝑄𝑖
𝑒(𝑡 + 1) represents the total output of the rest of the industry expected by 

firm 𝐶𝑖 for the next time period 𝑡 + 1 and 𝑋𝑖 ,   𝑋𝑖 ⊂ [0,∞), is the strategy set which is 

used for selection of the optimal production of  the company 𝐶𝑖. The principal 

assumption of the model is how to represent particular expectations about production 

of other companies. The original Cournot assumption is a simple naive expectation 

𝑄𝑖
𝑒(𝑡 + 1) = 𝑄𝑖(𝑡)  (5) 

for all 𝑖 ∈ 𝐷.  

2.2 Dynamics of Cournot Model  

Let all problems (4) have theirs unique solutions. If (5) is applied we can write 

𝑞𝑖(𝑡 + 1) = 𝑅𝑖(𝑄𝑖(𝑡)), 𝑖 ∈ 𝐷, (6) 



 

 

where 𝑅𝑖: ∏ 𝑋𝑗
𝑛
𝑗=1,𝑗≠𝑖 → 𝑋𝑖 is the reaction function of company 𝐶𝑖 or the best response 

or best reply mapping of firm 𝐶𝑖. To study this dynamical problem in more details a 

more specific forms of inverse demand functions and costs functions are necessary.  

2.3 Nonlinear Model 

Similarly as in [9] we consider that (a) the quantity demanded is reciprocal to price 

and (b) the firms operate under constant unit costs. Particularly we assume that (1) has 

a form 

𝑝(𝑡 + 1) =
1

𝑄(𝑡)
, 𝑡 ∈ 𝑁0,  

(7) 

and instead of (3) it is possible to write profit function in the form 

  

𝑃𝑖(𝑥, 𝑄𝑖(𝑡)) =
𝑥

𝑥 + 𝑄𝑖(𝑡)
− 𝑎𝑖𝑥, 𝑖 ∈ 𝐷, (8) 

where 𝑎𝑖 , 𝑎𝑖 > 0, is a constant unit costs of the firm 𝐶𝑖 and 𝑥 substitutes 𝑞𝑖(𝑡) for a 

specific value of period 𝑡. Now it is possible to solve profit maximum problem (4). 

The first order conditions of this problem are 

  

𝑃𝑖
′(𝑥, 𝑄𝑖(𝑡)) =

𝑄𝑖

(𝑥 + 𝑄𝑖(𝑡))
2 − 𝑎𝑖 = 0,   𝑖 ∈ 𝐷. 

(9) 

As the numerator, residual demand, as well the unit cost 𝑎𝑖, are positive, we can find 

their roots, and solve (9) for the simple reaction function 

𝑥 = √
𝑄𝑖
𝑎𝑖
− 𝑄𝑖 ,    𝑖 ∈ 𝐷. 

(10) 

The reaction 𝑥 is positive provided that 

 

𝑄𝑖(𝑡) <
1

𝑎𝑖
,    𝑖 ∈ 𝐷. 

(11) 

If not, then the negative outcome has to be replaced by sufficiently small and nonzero 

outcome 𝜀, 𝜀 > 0, which allows us to construct the resulting reaction functions for 

dynamics (6). For all 𝑖 ∈ 𝐷 we put  

𝑞𝑖(𝑡 + 1) = 𝑅𝑖(𝑄𝑖(𝑡)) =  

{
 
 

 
 
√
𝑄𝑖
𝑎𝑖
− 𝑄𝑖 , 𝑄𝑖(𝑡) <

1

𝑎𝑖
,

𝜀, 𝑄𝑖(𝑡) ≥
1

𝑎𝑖
⋅

 

 

(12) 



 

 

This system of difference equations (12) stands for a particular dynamics (6) of 

the introduced nonlinear oligopoly model.   

 

3 Results and Discussion  

For the rest of this paper we will consider a special case of a duopoly game. In this 

case 𝑛 = 2 and immediately from (2) we have 

𝑄𝑖(𝑡) = {
𝑞2(𝑡), 𝑖 = 1,

𝑞1(𝑡),         𝑖 = 2.
 

(13) 

If duopolists partially adjust their quantities towards the their best replies according to 

(6) and (13), the dynamical system is generated by the iteration of the map  

𝐹: (𝑞1(𝑡 + 1), 𝑞2(𝑡 + 1) ) = (𝑅1(𝑞2(𝑡)), 𝑅2(𝑞1(𝑡))) , (14) 

where 𝑅1: 𝑋2 → 𝑋1 and 𝑅2: 𝑋1 → 𝑋2 are reaction functions of companies 𝐶1 and 𝐶2 

given by (12). If the initial conditions (𝑞1(0), 𝑞2(0)) ∈  𝑋1 × 𝑋2 are given, a 

trajectory  

{(𝑞1(𝑡), 𝑞2(𝑡))}𝑡=0
∞  = {𝐹𝑡(𝑞1(0), 𝑞2(0))}𝑡=0

∞ , (15) 

is generated by 𝑡 −th iteration 𝐹𝑡 , 𝑡 ∈ 𝑁0, of map (14) and it produces Cournot 

tatonnement, [6].  

3.1 Equilibrium and its properties 

If there is a fixed point (𝑞1
∘, 𝑞2

∘) of the map (14) it is called Cournot-Nash equilibrium, 

[5]. This equilibrium can be found as a solution to the system of equations 

(𝑞1
∘ , 𝑞2

∘) = 𝐹(𝑞1
∘ , 𝑞2

∘). (16) 

With the particular form of reaction functions (12) it is possible to find the following 

nonzero equilibrium  

(𝑞1
∘ , 𝑞2

∘) = (
𝑎2

(𝑎1 + 𝑎2)
2
,

𝑎1
(𝑎1 + 𝑎2)

2
). (16) 

The stability of this stationary point can be determined from the Jacobian matrix of 

map (14) enumerated at the stationary point, [4]. It is possible to find  

𝐽(𝑞1, 𝑞2) =

(

 
 

0
1

2√𝑎1𝑞2
− 1

1

2√𝑎2𝑞1
− 1 0

)

 
 
 , 

 

(17) 

which means that at stationary point (16) we have 



 

 

𝐽(𝑞1
∘ , 𝑞2

∘) = (

0
𝑎2 − 𝑎1
2𝑎1

𝑎1 − 𝑎2
2𝑎2

0
). 

 

(18) 

The eigenvalues of matrix (18) are imaginary as follows 

𝜆1 = −𝑖 
|𝑎1 − 𝑎2|

2√𝑎1𝑎2
,    𝜆2 = 𝑖

|𝑎1 − 𝑎2|

2√𝑎1𝑎2
⋅ 

(19) 

The stationary point (𝑞1
∘, 𝑞2

∘) is asymptotically stable if |𝜆| <  1, [4]. Solving this 

problem we can observe that such situation happens when one of the following 

relation for the ratios 𝑎1/𝑎2 or a2/𝑎1 of unit costs is valid  

3 − 2√2 <
𝑎1
𝑎2
< 3 + 2√2  or   3 − 2√2 <

𝑎2
𝑎1
< 3 + 2√2. (20) 

As soon as the ratios of the unit costs fall outside these intervals the stationary point is 

not stable.  

3.2 Bifurcation diagram 

To study periodical points of map (14) it is convenient to construct a bifurcation 

diagram. It shows the relationship between values of a parameter and values of fixed 

points or values of periodic orbits of the given dynamical system. More generally 

asymptotically stable stationary points and periodical points are special types of 

attractors that can be briefly characterized in two steps as follows: (i) a limit set of a 

point 𝑞 ∈ 𝑊, where 𝑊 is an open set in 𝑅2, is the set of all points 𝑎 ∈ 𝑊, such that 

there exists a sequence 𝑡𝑖 → ∞ and lim
𝑡𝑖→∞

𝐹𝑡𝑖(𝑞) = 𝑎 ; (ii) a compact set 𝐴 ⊂ 𝑊 is 

called attractor if there is a neighborhood 𝑈 of 𝐴 such that 𝐴 is the limit set of all 

initial values 𝑞(0) ∈  𝑈.  Simply put an attractor is a set of all points to which 

trajectories starting at initial points from a neighborhood of the set will converge, [1].    

Now it is possible to characterize the bifurcation diagram in more details: if 𝜆, 𝜆 ∈
𝑅, is a parameter of dynamical system (14) and 𝐴𝜆 is a set of all attracting points for 

the given value of 𝜆 ∈ 𝑀, where 𝑀 is the parameter set of our interest, then the 

bifurcation diagram is the graph of the relation {(𝜆, 𝐴𝜆)| 𝜆 ∈ 𝑀 }. This figure shows 

the birth, evolution and extinction of attracting sets, [1]. Because (14) depends 

symmetrically on two parameters 𝑎1 and 𝑎2, corresponding cost prices of firms, we 

consider the price ratio 𝜆 =  𝑎1/𝑎2 as a bifurcation parameter and we also set 𝑎2 = 1, 

as a price unit.  

The algorithm for plotting a bifurcation diagram is based on the direct application 

of definition of attractor – instead of computing exact limit points only points for 

sufficiently large number of iterations of map (14) are considered. The algorithm can 

be described as follows: (i) choose the initial value 𝜆 of the parameter of map (14); 

(ii) at random choose an initial value (𝑞1(0), 𝑞2(0)) of map (14); (iii) calculate a few 

first iteration od (14) and ignore them; (iv) calculate a few next iterations of (14) and 



 

 

plot them; (v) increment the value a of the parameter of map (14) and repeat above 

steps until you reach the end of the parameter sets. See also [1]. The given algorithm 

was implemented in Matlab and its result is reported at Fig. 1. 

   

Fig. 1. Bifurcation diagram of map (14). The black diagram describes the dependence of limit 

points of variable 𝑞1 on parameter 𝜆 and similarly the grey diagram describes limit points of 

variable 𝑞2.  

3.3 Lyapunov exponent 

The bifurcation diagram can also point out to the phenomenon called deterministic 

chaos. In this case almost all intervals seem to be filled by the plot. Once, such a 

phenomenon is observed it is useful to compute Lyapunov exponents for special 

values of parameters. It is a method how to formally identify the sensitive dependence 

of the given system on initial conditions, which is one of the characteristic attribute of 

chaotic behavior. This exponent measures the exponential rate of separation of very 

close trajectories.  

Here we give only a concise characterization based on [1]. Let 𝐹 be a smooth map 

on 𝑅2, similarly as in (14), and let 𝐽𝑛 = 𝐷𝐹
𝑛(𝑣0), where 𝑣0 is an initial point and 𝐷 is 

the first derivative of the map 𝐹. In other words 𝐽 is a Jacobian of the map 𝐹. For 𝑘 ∈
{1,2} let 𝑟𝑘

𝑛 be the length of the 𝑘-th longest orthogonal axis of the ellipsoid 𝐽𝑛𝑁, 

where 𝑁 is the unit circle with the center 𝑣0. It means that the value 𝑟𝑘
𝑛 measures the 

expansion or contraction in the neighborhood of the orbit starting at 𝑣0 during 𝑛 first 

iterations. If the following limit exists 𝐿𝑘 = lim
𝑛→∞

(𝑟𝑘
𝑛)1/𝑛 it is called the 𝑘-th 

Lyapunov number and moreover 𝑘-th Lyapunov exponent of 𝑣0 is ℎ𝑘 = ln 𝐿𝑘. If 𝐿𝑘 >
1 then ℎ𝑘 > 0, which means that two initially close trajectories can move away to 

each other. On other side if 0 < 𝐿𝑘 < 1 then ℎ𝑘 < 0, which means that two initially 

close trajectories can stay close to each other. 

The particular algorithm for computing Lyapunov exponents uses an indirect 

approach. It is based on Wolf’s ideas given in [1, 13] and can be briefly described as 

follows: (i) we start with initial orthonormal basis {𝑤1
0, 𝑤2

0} of the space 𝑅2, that 

sufficiently characterize the initial circle 𝑁 and further compute the vectors 𝑧1 =
𝐷𝑓(𝑣0)𝑤1

0 and 𝑧1 = 𝐷𝑓(𝑣0)𝑤1
0, (ii) use vectors {𝑧1, 𝑧2} and Gramm-Schmidt 



 

 

orthogonalization method to find orthogonal basis {𝑦1
1, 𝑦2

1},  (iii) set 𝑤1
1 = 𝑦1

1, 𝑤2
1 =

𝑦2
1, (iii) repeat steps (i), (ii) and (iii) for sufficiently large number of steps 𝑛, (iv) the 

good approximation for total expansion 𝑟𝑘
𝑛 where 𝑘 ∈  {1,2} is ‖𝑤𝑘

𝑛‖1/𝑛 , where ‖. ‖ 

is the Euclidean norm at 𝑅2.  

Unfortunately the given algorithm is not a good one for a particular numerical 

computation. To avoid the computation with large and small numbers it is possible to 

notice that  𝑟𝑘
𝑛  ≈ ‖𝑦𝑘

𝑛‖ ⋅ … ⋅ ‖𝑦𝑘
1‖. If we take the logarithm of the latter formula we 

can summarize that the formula 𝑛−1 ⋅ ∑ ln 𝑦𝑘
𝑖𝑛

𝑖=1  provide a good approximation of 𝑘-

th largest Lyapunov exponent. The described algorithm for map (14) was 

implemented in Matlab. We have found that Lyapunov exponents for initial state 

𝑣0 = (0.1, 0.1), parameter 𝜆 = 6.25 and parameter 𝜀 = 2.2 ⋅ 10−16 can be 

approximated by values ℎ1 ≈  0.1616 and ℎ2 ≈ 0.1605 respectively. Since at least one 

value of Lyapunov exponent is positive we can conclude that for the given value of 

parameter of  𝜆 the map (14) is sensitive to initial conditions. It means that it is 

possible to consider that the given map shows features typical for deterministic chaos.           

4 Conclusion 

The paper introduced a nonlinear version of Cournot duopoly model. The essential 

assumption of the model is a nonlinear inverse demand function. In particular and 

similarly as in [9] the assumption that the quantity demanded is reciprocal to price 

was used. The equilibrium was found and conditions of its stability were established. 

Provided there is a sufficiently large proportion between costs of two firms in duopoly 

game it was shown that there exist nonlinear phenomena such as bifurcation of limit 

values of production or deterministic chaos. To prove a sensitive dependence on 

initial condition, that accompanies deterministic chaos, the concept of Lypunov 

exponent has been used.  

In our future work we would like to improve and test the algorithm for 

computation of Lyapunov exponents. Its implementation in Matlab also deserves 

more tests and improvements.    
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