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Abstract: Platinum complexes have been studied for cancer treatment for several decades. Furthermore,
another important platinum characteristic is related to its chemical shifts, in which some studies have
shown that the 195Pt chemical shifts are very sensitive to the environment, coordination sphere, and
oxidation state. Based on this relevant feature, Pt complexes can be proposed as potential probes for
NMR spectroscopy, as the chemical shifts values will be different in different tissues (healthy and
damaged) Therefore, in this paper, the main goal was to investigate the behavior of Pt chemical shifts in
the different environments. Calculations were carried out in vacuum, implicit solvent, and inside the
active site of P13K enzyme, which is related with breast cancer, using the density functional theory (DFT)
method. Moreover, the investigation of platinum complexes with a selective moiety can contribute
to early cancer diagnosis. Accordingly, the Pt complexes selected for this study presented a selective
moiety, the 2-(4′aminophenyl)benzothiazole derivative. More specifically, two Pt complexes were used
herein: One containing chlorine ligands and one containing water in place of chlorine. Some studies
have shown that platinum complexes coordinated to chlorine atoms may suffer hydrolyses inside
the cell due to the low chloride ion concentration. Thus, the same calculations were performed for
both complexes. The results showed that both complexes presented different chemical shift values
in the different proposed environments. Therefore, this paper shows that platinum complexes can
be a potential probe in biological systems, and they should be studied not only for cancer treatment,
but also for diagnosis.
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1. Introduction

Cancer is currently one of the most discussed diseases, as it presents incredibly high mortality
rates [1,2]. More specifically, cancer is a term employed for a group of diseases characterized by the
acute growth of abnormal cells. Breast cancer is the class with the highest incidence in women, and it
is associated with the high mortality rates in women with cancer [3–5].

Early-stage diagnosis is very important for cancer treatment, as it can reduce mortality rates
and increase treatment possibilities [6–8]. Some imaging techniques are used as main approaches in
cancer diagnosis, including mammography, magnetic resonance imaging (MRI), positron-emission
tomography (PET), and computed tomography (CT). Furthermore, the use of these techniques with the
help of biochemical biomarkers, such as proteins, could increase the chances of early diagnosis [3,9,10].
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The use of imaging techniques associated with biomarkers as proteins, RNAs, microRNAs, and
enzymes could also increase the chances of early diagnosis [3,11,12]. Furthermore, the use of compounds
that have already been employed in medicine could potentially probe diseases [3,13,14]. In this context,
Mavroid and colleagues synthesized the cis-dichloro(2′pyridinyl)methylamineplatinum(II) bonded to
2-(4′aminophenyl)benzothiazole derivative in order to study its properties as an antitumor agent [13].

This complex has two important moieties in cancer treatment: The platinum and the benzothiazole
group. In 1965, the carcinogenic properties of the platinum group were discovered with the emergence
of cisplatin, an important drug in chemotherapy [15–17]. Since then, different drugs using platinum
has been developed to improve the treatment of different types of cancer [16,18,19]. Regarding the
benzothiazole moiety, some studies have revealed that these types of molecules show potent and
selective antitumor activity in vitro and in vivo against breast cancer cells, among other types of
cancer [14,20,21].

Accordingly, the purpose of this work was to use the cis-dichloro(2pyridinyl)methylamineplatinum(II)
bonded to 2-(4′aminophenyl)benzothiazole derivative (Figure 1) as a potential probe in breast cancer
diagnosis. It is also important to mention that this coordinated complex has already been investigated
as a potential anticancer agent [13]. Furthermore, the strategy chosen for this work was to perform
chemical shift analysis of 195Pt in different chemical environments (vacuum, implicit solvent, and inside
active enzyme P13K), which was done through nuclear magnetic resonance (NMR) calculations. These
calculations were performed for the monoaquated complex (Figure 2), as it is well-known that platinum
complexes are hydrolyzed inside the cell [18,19,22]. Researcher groups have studied different platinum
complexes with different ligands, as well as different oxidation numbers. Synthesis, characterization,
and NMR analysis were also performed, and it was possible to see the sensitivity of the 195Pt chemical
shift [23–26].
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Figure 2. Monoaquated complex: Monoaquamonochloro(2′pyridinyl)methylamineplatinum(II) ion
bonded to 2-(4′aminophenyl)benzothiazole derivative (Complex 2).

2. Results and Discussion

This discussion is divided into three main parts following the order established in the methodology
section. Initially, it is worth mentioning that the validation step of the theoretical methodology was
based on another work about NMR platinum complexes developed by Paschoal and collaborators
(2017) [27]. In this research, the authors developed a basis set with relativistic correction for Pt(II)
chemical shift calculations [27]. Moreover, for the validation step, we used two different methodologies
for the platinum atom. In this step, optimization calculations were carried out at B3LYP/lanl2dz,
B3LYP/aug-cc-pVTZ-pp, and Zora/B3LYP/Def2-TZVP levels, which is a relativistic method. The results
are described in the supplementary material. In the second part, the 195Pt NMR chemical shift for
complex 1 (Figure 1) was calculated in the gas phase, in solution, using implicit solvent (PCM) model,
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and in the P13K enzyme active site. In order to evaluate the thermal effects, the dynamic simulations
were also carried out. In the last part, the same calculations were performed for the monoaquated
complex (Figure 2).

For NMR chemical shift calculations, the notation was as follows: Level of shielding
computation (PBEPBE)//level of geometry optimization (B3LYP) or MD simulation. For example,
(PBEPBE//B3LYP) means shielding computation in vacuum//geometry optimization in vacuum,
while (PBEPBE/PCM(H2O)//B3LYP/PCM(H2O)) means shielding computation with implicit solvent
(PCM)//geometry optimization with implicit solvent (PCM). The same notation was employed when
including the dynamic effect (ADMP). For example, (PBEPBE//ADMP) means shielding computation
in vacuum//dynamic simulations in vacuum, while (PBEPBEPCM(H2O)//ADMP/PCM(H2O)) means
shielding computation with implicit solvent (PCM)//dynamic simulations with implicit solvent (PCM).

2.1. Validation of 195Pt NMR Chemical Shifts Theoretical Methodology

In the study developed by Paschoal and collaborators, a basis set (labeled as NMR-DKH) was
developed for 195Pt NMR, which allowed the recovery of relativistic effects. The authors performed several
NMR chemical shift calculations for many Pt(II) complexes using different theoretical methodologies.
Then, a comparison was made among the three different methodologies [27].

The studied complexes were initially optimized using two different basis sets. After this
step, NMR calculations were performed using NMR-DKH basis set, as follows: (PBEPBE/NMR-
DKH/IEFPCM(UFF)//B3LYP/LANL2DZ/Def2-TZVPP/IEFPCM(UFF)) (Model 2) and (PBEPBE/NMR-
DKH/IEFPCM(UFF)//B3LYP/LANL2DZ/Def2-SVP/IEFPCM(UFF)) (Model 3). Then, a comparison was
performed using a Hamiltonian relativistic operator (ZORA), as follows: COSMO-PBE-SO-ZORA/TZ2P
(Model 1) [27]. A statistical study using absolute deviation (MAD) and the relative deviation (MRD)
were employed for a methodology comparison. The statistical results showed that the MAD and the
MRD were 200 ppm and 6% (Model 1), 182 ppm and 6% (Model 2), and 168 ppm and 5% (Model 3),
respectively [27].

As a result, the methodology chosen by Paschoal and collaborators showed an excellent agreement
between the different models used. In the same way, the theoretical values obtained by relativistic
calculations using NMR-DKH basis set agreed with the experimental data [27].

2.2. The 195Pt Nuclear Magnetic Resonance Chemical Shift

The importance of investigating how temperature, coordination, and chemical environment effects
influence the chemical shifts is well-known. This investigation is even more important when the goal
is to use this NMR parameter to propose a compound as a probe in biological systems. Keeping that in
mind, the importance of geometry, chemical environment, solvent, and thermal effects for the 195Pt
NMR chemical shift in Complex 1 (Figure 1) were analyzed. The corresponding δ(195Pt) values were
collected and are reported in Table 1.

Table 1. 195Pt NMR chemical shifts for Complex (Figure 1) computed at the GIAO–PBEPBE/NMR-DKH.

Level of Approximation 195Pt (ppm)

δe(PBEPBE//B3LYP) −1960.49
δe(PBEPBE//B3LYP/PCM(H2O)_ −2296.13

δe(PBEPBE/PCM(H2O)//B3LYP/PCM(H2O)) −1783.80
δ310K(PBEPBE//ADMP) −2256.00

δ310K (PBEPBE/PCM(H2O)//ADMP/PCM(H2O)) −4069.56

Analyzing the geometry effect on the 195Pt chemical shifts (Table 1), we observed that
the δ values revealed a variation of 335.64 ppm when comparing δe(PBEPBE//B3LYP) and
δe(PBEPBE//B3LYP/PCM(H2O)). Regarding the chemical shift effects for 195Pt, when comparing
the NMR calculations with and without implicit solvent δe(PBEPBE//B3LYP/PCM(H2O)) and
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δ(PBEPBE/PCM(H2O) //B3LYP/PCM(H2O)), a variation of 512.33 ppm was observed (Table 1). It is
worth mentioning that this large difference in chemical shift values for different methodologies (vacuum
and implicit solvent) was expected. According to the literature, the platinum chemical shift is very
sensitive to geometry, electronic parameters, and chemical environments [28].

In this line, thermal and dynamic effects are other important contributions to be analyzed
when studying chemical shifts. When the dynamic effect was included in the gas phase comparing
δe(PBEPBE//B3LYP) and δ310K(PBEPBE//ADMP)), the chemical shift value decreased by 295.51 ppm (Table 1).
Moreover, when the implicit solvent effect was considered along with the dynamic effect (comparing
δe(PBEPBE/PCM[H2O]//B3LYP/PCM[H2O]) and δ310K (PBEPBE/PCM[H2O]//ADMP/PCM[H2O])), the
chemical shift value decreased by 2285.76 ppm.

Indeed, the methodology including thermal and dynamic effects with the implicit solvent was the
closest approximation to real systems used in this work. In this sense, this methodology was compared
to the Pt chemical shift inside the enzyme in the next topic.

The 195Pt Chemical Shift in PI3K Enzyme Active Site

Docking calculations are a fundamental tool for studies involving ligand and receptor systems [29].
In this work, a docking study was carried out to analyze the 195Pt chemical shift inside the enzyme PI3K,
which is related to breast cancer. Then, the overlap between the complex conformations, generated
during docking analysis, and the active ligand (PDB ligand) (benzothiazole derived) was performed
inside the active site of the enzyme. The best superposition between the two structures is shown in
Figure 3.
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Furthermore, the complex behavior inside of the receptor active site was also evaluated to check
the stability of the complex in this chemical environment. The complex established hydrogen bonds
with Val882 and Asp 884 amino acids (Figure 4).
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Figure 4. Intermolecular interaction between platinum complex, Val 882 and Asp 884.

Furthermore, other interactions happened to give stability to the system receptor–ligand,
for example, as electrostatic and hydrophobic interactions. In this sense, the electrostatic interactions
were also shown in Figure 5.

Accordingly, it can be suggested that the platinum complex is stable inside the active site of the
enzyme. The platinum complex formed interactions inside the active site of enzyme and presented
an intermolecular interaction energy around−150 kcal mol−1. To validate this methodology, a redocking
procedure was performed. However, the docking study is a theoretical research and the preliminary
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results do not take into account pharmacokinetic proprieties. Therefore, an additional in vitro was
necessary test to evaluate the interactions between this platinum complex and P13K enzyme.Molecules 2019, 24, x FOR PEER REVIEW 5 of 10 
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To analyze the platinum complex (Figure 1) as a potential probe in biological systems, it was
also necessary to perform NMR calculations for the 195Pt chemical shifts of the most stable complex
conformation in the active site of P13K enzyme, which resulted in a δ(195Pt) of −1919.70 ppm. The result
is in accordance to the expected value. It is well-known that the chemical environment inside the
active site is hydrophobic, and the chemical shift should be close to the chemical shift obtained
through the calculations without solvent δe (PBEPBE//B3LYP) for the complex (Table 1). Furthermore,
the comparison between the chemical shift for the complex after docking and using thermal and dynamic
and solvent effects (δ310K (PBEPBE/PCM[H2O]//ADMP/PCM[H2O])) is important to understand the
behavior of the complex in different environments. In this sense, the difference found when comparing
these both methodologies was 2149.86 ppm.

With that in mind, these results are very interesting for this proposal. The environment inside the
protein and the thermal and solvent effects are different, which show the sensitivity of the Pt chemical
shift. In addition, platinum complexes are already used in medicine for cancer treatment, which may
facilitate its use as a diagnosis compounds.

2.3. The 195Pt Chemical Shift for Monoaqua Platinum Complex

Since 1965, when carcinogenic properties of cisplatin were discovered, platinum (II) complexes
have been used as important drugs in cancer treatment [15–17]. The platinum drugs present activity
against cancer due their ability to bind to the N7 atom of guanine from the DNA. An important step in
the interaction between platinum and DNA is the aquation of platinum complexes, which is crucial for
the following binding step [18,22]. Several studies have shown that the monoaqua cisplatin complex
(cis-(Pt[NH3]2[H2O]Cl)+1) is the active hydrolyzed specie at 310 K that binds to DNA, as the diaquo
complex (cis-(Pt[NH3]2[H2O]2)+2) is the less likely specie in physiological pH [18].

In this context, it is also important to analyze the behavior of the monoaqua complex as it may be found
in this way inside the cell. Thus, to propose platinum complexes as a potential probe, this aspect needs
to be considered. In this sense, for monoaqua complex (Figure 2) calculations were performed including
thermal and dynamic effects with an implicit solvent (δ310K (PBEPBEPCM[H2O[//ADMP/PCM[H2O])).
Therefore, for the study of the monoaqua compound, this methodology was employed for the evaluation
of the thermal, dynamic, and solvent effects, and 195Pt chemical shift calculations were also performed
inside the active site of the enzyme. Both results were compared to analyze the behavior of spectroscopic
parameters (chemical shifts) in these different environments.

The corresponding δ(195Pt) value for the monoaqua platinum complex was −2813.79 ppm.
Comparing this result to result for the complex before hydrolyses (Figure 1) (Table 1), a variation in the
obtained 195Pt chemical shift values was observed. Therefore, when a water molecule was added in
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place of a chlorine atom, the respective value increased by 1255.79 ppm. This was expected, as it is
known that platinum chemical shifts are sensitive to the coordination sphere.

In this sense, the docking study was performed to better understand the interaction of the
monoaqua complex inside the active site of the enzyme. The most important moiety of the complexes
for this step is the benzothiazole. The ligand inside the enzyme is derived from benzothiazole,
as previously mentioned in the docking topic. From the docking studies, it was observed that the
monoaquated complex established hydrogen bonds similarly to what was observed for Complex 1.
The associated intermolecular interaction energy was around −140 kcal mol−1.

The 195Pt chemical shift of the most stable complex conformation in the active site of PI3K enzyme
was performed for Complex 2, which resulted in a δ (195Pt) of −1783.36 ppm. The result was in
accordance to the expected value and presented a big difference when compared with results for the
(δ310K (PBEPBEPCM[H2O]//ADMP/PCM[H2O])) methodology, which presented a value of 2813.79 ppm.
Accordingly, the results for the monoaqua platinum complex (a possible specie for the platinum
complex in biological system) indicated a similar behavior between this specie and the first complex.
Both presented a large difference in their chemical shifts in the different environments proposed.

3. Methodology

3.1. Optimization and Molecular Dynamics (MD) Procedure

Geometries were fully optimized at the B3LYP theory level [30], with the LanL2dz [31] basis set
with effective core potential (ECP) for the Pt atom and Def2-TZVPP [32] for the ligand molecule in the
Gaussian 09 program [33]. These calculations were performed either in vacuum or in the presence of
polarizable continuum model, using the dielectric constants of water (denoted (PCM)(H2O)) [14,26–30].

The MD simulations were performed using the atom centered density matrix propagation
(ADMP) [34–37], which is a molecular dynamics model. Furthermore, the same level of theory, i.e.,
B3LYP/Lanl2dz, was chosen for MD. It is worth mentioning that the temperature of 310 K was included
in all MD simulations to reproduce the regular biological temperature.

From the obtained MD conformations, the uncorrelated structures were selected employing the
statistical inefficiency method, available in the SciLab 2.7 software [38]. This procedure was performed
in order to select conformations for further NMR analysis.

3.2. Nuclear Magnetic Resonance (NMR) Calculations

The magnetic shielding parameters (σ) were obtained for optimized geometries, as well as for selected
conformations from molecular dynamics. These calculations were performed with the gauge-including
atomic orbitals (GIAO)–DFT method involving the PBEPBE functional [27,39–43]. These calculations
used the NMRDKH basis set [26], which presented a doubly polarized triple-zeta characteristic.

The 195Pt NMR chemical shifts δwere calculated relative to cisplatin, which presented an experimental
chemical shift (δ (195Pt) = −2097 ppm) [27]. Cisplatin compound was employed using the same theory
level described above.

3.3. Molecular Docking Studies

The complexes were docked inside of the PI3K enzyme, which presented a crystallographic
structure complexed with N-(6-)2-[methylsulfanyl]pyrimidin-4-yl)-1,3-benzothiazol-2-yl)acetamide
(active ligand) (Protein Data Bank (PDB) code 3QJZ [44]; resolution = 2,90 Å) using the Molegro Virtual
Docker (MVD®) software according to the same procedure adopted previously [14,29].

The binding site was limited to a spherical cavity with variation in the radius of 10–12 Å, and the
residues was considered flexible inside a radius of 11 Å around the ligand. For these analyses, around
50 poses were obtained for each compound. Then, the analysis of the ligand–protein interactions was
performed, and the overlaps were found with the active ligand inside PI3K. The best conformation
of the compound was selected according to its degree of structural similarity between the active
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ligand and the complexes. The intermolecular interaction energy was also used for choosing the best
conformation. The accommodation in the cavity was another important factor that helped evaluate the
best energy of interaction with the enzyme [29,45,46].

The appropriate conformation of the studied ligand at the enzyme active site, considering some
amino acids residues, was selected for the NMR analysis. Furthermore, the same theory level, i.e.,
PBEPBE/NMRDKH, was selected for these calculations.

4. Conclusions

In this research, two platinum complexes were investigated in different chemical environments
(vacuum, implicit solvent, and inside active site of P13K enzyme) to propose Complex 1 (Figure 1)
as a probe in biological systems. This proposal is possible because the 195Pt chemical shifts are very
sensitive to the chemical environment. Keeping this in view, the 195Pt chemical shift value is a good
spectroscopic parameter to propose platinum complexes as potential spectroscopic probes in biological
systems. In this context, we performed chemical shift analysis of platinum-195 complexes in the
above-mentioned chemical environments using a NMR-DKH basis set. The difference found in 195Pt
chemical shifts when comparing the value in each chemical environment was expected and indicates
that platinum complexes may be a potential probe in biological systems. This is possible due to the
difference found when comparing the values inside and outside the enzyme. This paper proposed the
use of platinum complexes not only in cancer treatments, but also in diagnosis, as these complexes
have already been studied as an antitumor agent.
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