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1. Introduction

The study of Diophantine equations was started by Diophantus of Alexandria in around the
third century BC. One of the most surprising properties of Diophantine equations is that a slight
modification of the original equation could generate much easier or harder equations. See, for example,
the proof of the unsolvability of Fermat’s equation in 1995 and compare it with a much simpler matter
to prove that similar equation xn + yn = zn+1 has an infinite family of solutions given by

xk = kn + 1, yk = k(kn + 1) and zk = kn + 1, for all k ∈ N and n ≥ 2.

Since the 20th century, the study of families of Diophantine equations involving recurrence
sequences has held a prominent role in theoretical mathematics. A well-known type of linear-recurrence
sequence C(a, b) = (Cn(a, b))n≥0 is defined for all n ≥ 0 by recurrence Cn+2 = Cn+1 + Cn, with initial
values C0 = a and C1 = b. Fibonacci sequence (Fn)n≥0, which corresponds to the choice of a = 0 and
b = 1, is surely the most famous from these sequences (similarly, the well-known Lucas sequence
(Ln)n≥0 is created by choice a = 2 and b = 1). An excellent result on this subject is related to equation
Fn = xs, with s > 1, i.e., the problem of finding all perfect powers in the Fibonacci sequence. In fact,
this question was a classical problem that attracted much attention during the past 40 years. In 2006,
Bugeaud et al. [1] (Theorem 1) confirmed the expectation: the only perfect powers in that sequence are
0, 1, 8, and 144.

Another popular area of research that has drawn great interest is the study of the divisibility
properties of Fibonacci numbers. For example, it is still an open problem if there are infinitely many
primes in the Fibonacci sequence (we recommend [2–6]). Let n be a positive integer number, the order
(or rank) of appearance of n in the Fibonacci sequence, denoted by z(n), is defined as the smallest
positive integer m, such that n | Fm (some authors also call it the Fibonacci entry point or order of
apparition; see sequence A001177 in [7]). This function can be implemented in software Mathematica
R©, see book [8], the following way

z[n_]:=Catch[Do[i;If[Mod[Fibonacci[i],n]==0,Throw[i]],{i,2*n}]]
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Many papers have been devoted to features of this function. Marques [9,10], Luca, and
Pomerance [11] studied the local behavior of the rank of appearance in the Fibonacci sequence.
Then, considerable effort was made to find the values of function z(n) when there are certain
expressions in its argument containing some operations of powers of Fibonacci and Lucas numbers.
Values of z(∏k

i=0 Ln+i) were studied by Marques [12], Marques, and Trojovský [13], and Khaochim
and Pongsriiam [14]. Similarly, values of z(∏k

i=0 Fn+i) were found by Marques [15], and Khaochim
and Pongsriiam [16], and values of z(Fk

n) and z(Lk
n) derived by Marques [17] and Khaochim and

Pongsriiam [18]. Recently, Trojovský [19,20] derived for distinct positive integers m, n < m the values
of z(Fm ± Fn) and z(Ln − Lm), when m ≡ n (mod 2) and m ≡ n (mod 4), respectively.

We also remark on the existence of several results related to upper bounds for z(n), for instance,
z(n) < ∞ for all n ≥ 1. The proof of this fact is an immediate consequence of the Théorème
Fondamental of Section XXVI in [21]. In 1975, Sallé [22] proved that z(n) ≤ 2n for all positive integers
n. This is the sharpest upper bound for z(n), since, for example, z(6) = 12 and z(30) = 60. In the case
of a prime number p, one has better upper bound z(p) ≤ p + 1 (Savin [23] proved that, for primes
p ≡ 13, 17 (mod 20) holds z(p) | (p + 1)/2, so z(p) ≤ (p + 1)/2). Equality z(p) = p + 1 is achieved
for some prime numbers. For instance, this holds for all the following primes:

2, 3, 7, 23, 43, 67, 83, 103, 127, 163, 167, 223, 227, 283, 367, . . . (1)

which is OEIS [7] sequence A000057. Amazingly, these primes are the only ones with the property of
dividing at least one number in the sequence C(a, b) for all choices of integers a and b (see [24]).

There is no a closed formula for z(n), so Diophantine equations related to z(n) play an important
role in the best comprehension of this function. Marques [25], and Somer and Křížek [26] independently
proved that all fixed points of function z(n), that is, all solutions of Diophantine equation z(n) = n,
have form n = 5k or 12 · 5k for some k ≥ 0. A question therefore arises: what happens with slightly
modified Diophantine equation z(n) = n+ 1? Is it easier, like our example related to Fermat’s equation?

By using Mathematica R©, we can find out that the first few solutions of equation z(n) = n + 1
are equal to primes given in (1). Indeed, all solutions of equations z(n) = n± 1 are prime numbers.
This fact was proven by Lehmer in Theorem 5.1 in [27].

So, a new question arises: what are the solutions of Diophantine equation z(n) = P(n), for a given
polynomial P(x) ∈ Z[x] with positive coefficients? Before attacking this problem, we must make some
considerations. Since z(n) ≤ 2n, for all n > 2, linear monic polynomials are the only ones that can
return some solution of z(n) = P(n).

In view of that, in this paper we work on Diophantine equation z(n) = n+ `, for ` ∈ {±1, . . . ,±9}.
In fact, our aim was to provide a general method that could be used to solve this equation for any
previously fixed integer `.

It is important to emphasize that knowledge of the arithmetic nature of solutions of equations
related to z(n) may lead to important pieces in mathematics. For example, to prove that all solutions
of equation z(n) = z(n2) are prime numbers is implied in the first case of Fermat’s Last Theorem
(see [28]).

To start, since our method is based on usage of the p-adic valuation of Fibonacci numbers, here we
present another proof for Lehmer’s result (cases ` = ±1).

Theorem 1. Let n be a positive integer such that z(n) = n± 1; then, n is a prime number.

Since the solutions of equation z(n) = n + ` have very different arithmetic behaviors for ` = 0
(numbers with many divisors) and for ` = ±1 (prime numbers), which kind of solutions we can expect
for ` = ±2, . . . ,±9 ? This is answered in the next results.

Theorem 2. Let n, ` be any positive integers, ` ∈ {2, 3, 4, 7, 8, 9}. The only solutions of Diophantine equation
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z(n) = n + ` (2)

are
(n, `) ∈ {(4, 2), (9, 3), (49, 7), (22, 8), (27, 9)}.

The reader may wonder what happens in cases ` = 5 and 6. While Equation (2) has at most one
solution for each ` ∈ {2, 3, 4, 7, 8, 9}, these remaining cases seem to have infinitely many solutions of a
very special form.

Theorem 3. Solutions of Diophantine equation (2) with ` ∈ {5, 6} are

` = 5 : 5p, where p runs through all primes with z(p) = p + 1,
` = 6 : 6m, where z(m) = (m + 1)/2.

Note that, contrary to the case of ` = 5, the hypothesis that n = 6m with z(m) = (m + 1)/2 does
not imply that z(n) = n + 6. For instance, values of m belonging to {17, 53, 137, 173} satisfy z(m) =

(m + 1)/2, but 6m− z(6m) ≥ 66 for all m in the previous set. Indeed, the set of counterexamples
is infinite.

Employed methods in the proofs of Theorems 2 and 3 could be used to work with negative values
of ` (we leave the proof of this theorem to the reader). For instance, it is not a hard matter to similarly
prove the two following theorems:

Theorem 4. Let n, ` be any positive integer, ` ∈ {2, 3, 4, 7, 8, 9}. The only solutions of Diophantine equation

z(n) = n− ` (3)

are
(n, `) ∈ {(8, 2), (16, 4), (28, 4), (17, 8), (32, 8)}.

Theorem 5. The solutions of Diophantine Equation (3) with ` ∈ {5, 6} are

(n, `) ∈ {(26, 5), (13, 6), (18, 6)} ∪ {(`p, `), z(p) = p− 1}.

2. Necessary Properties of Fibonacci Numbers

Lemma 1. Let m, n be any non-negative integer. We have

(a) n | m if and only if Fn | Fm.
(b) (d’Ocagne’s identity) (−1)nFm−n = FmFn+1 − FnFm+1.
(c) Fp−( 5

p )
≡ 0 (mod p), for all primes p.

Here, as usual, ( a
q ) denotes the Legendre symbol of a with respect to a prime q > 2.

Proofs of these statements can be found in [29]. We refer the reader to [30–32] for more details and
additional bibliography. The following lemma is a consequence of the previous and the “only if” part
of its proof can be found in [10] (see Lemma 2.2c). For the “if” part, it is enough to see that if z(n) | m,
then n | Fz(n) | Fm (by Lemma 1a).

Lemma 2. Let m, n be any positive integer. Then,

n | Fm if and only if z(n) | m.

The p-adic order (or valuation) of r, νp(r), is the exponent of the highest power of a prime p
that divides r. Throughout the paper, we use the known facts that νp(abε) = νp(a) + ενp(b), for
ε ∈ {−1, 1}, and that a | b if and only if νp(a) ≤ νp(b), for all primes p.
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The p-adic order of Fibonacci numbers was completely characterized (see [33,34]). For instance,
from the main result of Lengyel [34] (see a generalization in [35–37]), we can extract the
following statement:

Lemma 3. For n ≥ 1, we have

ν2(Fn) =


0, n ≡ 1, 2 (mod 3);

1, n ≡ 3 (mod 6);

3, n ≡ 6 (mod 12);

ν2(n) + 2, n ≡ 0 (mod 12),

ν5(Fn) = ν5(n), and if p is a prime 6= 2 or 5, then

νp(Fn) =

{
νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p));

0, if n 6≡ 0 (mod z(p))

A proof of this result can be found in [34].

3. Proof of Our Main Results

To simplify our presentation, from now on we use the usual notation [a, b] = {a, a + 1, . . . , b},
for some integers a, b, a < b.

3.1. Proof of Theorem 1

3.1.1. Case z(n) = n + 1

We used the method proof by contradiction. Let us suppose that n ≥ 2 is a composite number
and z(n) = n + 1. In particular, n | Fn+1 and we claim that n + 1 is also composite. On the contrary,
since n is composite, let q be one of its prime factors; thus, q | n | Fn+1, and Lemma 2 yields z(q) | n + 1.
One can conclude that z(q) = n + 1 (since n + 1 is a prime, and z(q) > 1), but this conclusion leads to
the following absurdity:

n + 1 = z(q) ≤ q + 1 < n. (4)

In the last inequality, we used that q is a proper factor of n. Thus, n + 1 is composite, as it was
claimed. Therefore, we can write n+ 1 = pa1

1 · · · p
ak
k as its factorization in prime numbers, where ai ≥ 1,

for i ∈ [1, k]. By hypothesis, n is also composite, so we write n = qb1
1 · · · q

bs
s . We can also claim that

there is a prime factor p of n + 1 such that, if q | n, then z(q) | (n + 1)/p. Note that this assertion is
equivalent to prove the existence of i ∈ [1, k], such that

z(qj) |
pa1

1 · · · p
ak
k

pi

holds for all j ∈ [1, s]. To obtain a contradiction, we suppose the contrary. Thus, there is j ∈ [1, s],
such that z(qj) - p−1

i (n + 1), for all i ∈ [1, k]; so,

p−1
i (n + 1) = z(qj)mi + ri, with 0 < ri < z(qj),

for some integers mi’s and ri’s and for all i ∈ [1, k]. Multiplying the above relation by pi, we get

n + 1 = z(qj)pimi + piri (5)
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for all i ∈ [1, k]. Since qj | n | Fn+1, the by Lemma 2, one has that z(qj) | n + 1. Therefore, Equation (5)
implies that z(qj) | piri, for all i ∈ [1, k]. Since z(qj) - ri (because 0 < ri < z(qj)), then z(qj)

and pi cannot be coprime, that is, gcd(z(qj), pi) = pi. In particular, pi | z(qj), for all i ∈ [1, k].
However, p1, . . . , pk are pairwise coprime; so, p1 · · · pk | z(qj). Let ` be a positive integer, such that
z(qj) = `p1 · · · pk. The proof can be divided into two cases:

Case 1. ` = 1. In this case, z(qj) = p1 · · · pk and since z(qj) - p−1
i (n+ 1), we get that p1 . . . pk - p−1

i (n+ 1).
Then we can deduce that 1 > ai − 1, for all i ∈ [1, k], which yields ai = 1. In conclusion,

n < n + 1 = p1 · · · pk = z(qj) ≤ qj + 1. (6)

This leads to an absurdity since n is a composite number. For that reason, n ≥ min{q2
j , 2qj} > qj + 1.

Case 2. ` > 1. In this case, since `p1 · · · pk | n + 1, we get ` = pc1
1 · · · p

ck
k , where ci + 1 ≤ ai, for i ∈ [1, k].

Thus z(qj) = pc1+1
1 · · · pck+1

k , but keep in mind that z(qj) - p−1
i (n + 1) and so ci + 1 > ai − 1. We then

conclude that ai − 1 < ci + 1 ≤ ai yielding ci + 1 = ai, for all i ∈ [1, k]. Hence, z(qj) = n + 1 and, similarly
to the previous case, we obtain the following contradiction:

qj + 1 < n < n + 1 = z(qj) ≤ qj + 1. (7)

This completes the proof of our last assertion. Let p be a prime with such property, i.e., such that
z(q) | (n + 1)/p for all prime factors q of n. Suppose that q | n, then q 6= 5 (otherwise, 5 | n | Fn+1 and
5 would simultaneously divide n and n + 1). So, we again need to consider two cases: if q = 2, then 2
divides Fn+1, and Lemma 3 yields

ν2(Fn+1) =


1, if n ≡ 2 (mod 6);

3, if n ≡ 5 (mod 12);

ν2(n + 1) + 2, if n ≡ 11 (mod 12).

Since n is even, then n ≡ 2 (mod 6) implying

1 ≤ ν2(n) ≤ ν2(Fn+1) = 1,

so ν2(n) = 1. On the other hand, since 3 = z(2) | (n + 1)/p, we have

ν2

(
Fn+1

p

)
≥ 1 = ν2(n).

When q 6= 2, Lemma 3 gives

νq

(
Fn+1

p

)
= νq

(
n + 1

p

)
+ νq(Fz(q)) = νq(Fz(q)) ≥ νq(n),

where we used that νq((n + 1)/p) = 0 (because q - p(n + 1)) and the fact that νq(n) ≤ νq(Fz(q)) =

νq(Fn+1) (since n | Fn+1).
In conclusion, we obtain n | F(n+1)/p, which yields (by Lemma 2) the following absurdity:

n + 1 = z(n) | n + 1
p

< n + 1.

The proof is then complete.
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3.1.2. Case z(n) = n− 1

The proof of this case proceeds along the same lines as the proof of Theorem 1, but there is a point
that requires extra care. In the previous subsection, we got a contradiction In inequalities (4), (6),
and (7) by the fact that they led to absurdity n + 1 < n. Using the same approach in the actual case,
we do not get a contradiction, as this approach leads to n− 1 < n. Thus, to deal with the actual case,
we have to replace z(qj) = n + 1 by z(qj) = n− 1 in our proving. Note that qj 6= 2; on the contrary,
3 = z(2) = n− 1. Thus, n = 4, but z(4) = 6 6= 4− 1. Therefore, qj > 2. So,

n = z(qj) + 1 ≤ qj + 2 < n,

where we used that n ≥ min{q2
j , 3qj} > qj + 2, for qj > 2. Hence, the proof is finished.

3.2. Proof of Theorem 2

As said before, our goal was to present a method to solve any of these equations. Thus, in order
to avoid unnecessary repetition in the proofs, we prove only Theorem 2 for ` = 2, that is, we prove
that the only solution of equation z(n) = n + 2 is n = 4 (we leave to the reader the task of repeating
the arguments to obtain a proof for the other cases).

First, we observed that all solutions of z(n) = n + 2 are composite numbers (since z(p) ≤ p + 1
for any prime p).

To derive a contradiction, suppose that n > 4 and z(n) = n + 2. In particular, n | Fn+2, and we
claim that n + 2 is also composite. On the contrary, since n is a composite number, let q be one of its
prime factors; thus, q | n | Fn+2, and Lemma 2 yields z(q) | n + 2. One concludes that z(q) = n + 2
(since n + 2 is prime and z(q) > 1). However, this leads to the following absurdity:

n + 2 = z(q) ≤ q + 1 < n + 1. (8)

Thus, n + 2 is composite as claimed.
Therefore, we can write n + 2 = pa1

1 · · · p
ak
k as its factorization in prime numbers, where ai ≥ 1,

for i ∈ [1, k], and let us write n = qb1
1 · · · q

bs
s . The essential ingredient in our proof is the following fact:

Key fact: There exists a prime factor p of n + 2, such that if q | n; then, z(q) | (n + 2)/p.
Note that this assertion is equivalent to prove the existence of i ∈ [1, k], such that

z(qj) |
pa1

1 · · · p
ak
k

pi

holds for all j ∈ [1, s].
To obtain a contradiction, we suppose the contrary. Thus, there exists j ∈ [1, s], such that

z(qj) - p−1
i (n + 2), for all i ∈ [1, k] and so

p−1
i (n + 2) = z(qj)mi + ri, with 0 < ri < z(qj),

for some integers mi’s and ri’s and for all i ∈ [1, k]. Multiplying the above relation by pi, we get

n + 2 = z(qj)pimi + piri, (9)

for all i ∈ [1, k]. Since qj | n | Fn+2, then by Lemma 2, one has that z(qj) | n + 2. Therefore,
Equation (9) implies that z(qj) | piri, for all i ∈ [1, k]. Since z(qj) - ri (because 0 < ri < z(qj)),
then z(qj) and pi cannot be coprime, that is, gcd(z(qj), pi) = pi. In particular, pi | z(qj), for all i ∈ [1, k].
However, p1, . . . , pk are pairwise coprime, so p1 · · · pk | z(qj). Let m be a positive integer, such that
z(qj) = mp1 · · · pk. The proof splits into two cases:



Mathematics 2019, 7, 1073 7 of 10

Case 3. m = 1. In this case, z(qj) = p1 · · · pk and since z(qj) - p−1
i (n + 2), we get that p1 . . . pk -

p−1
i (n + 2). We then deduce that 1 > ai − 1, for all i ∈ [1, k] which yields ai = 1. In conclusion, we obtain the

following contradiction:
n + 2 = p1 · · · pk = z(qj) ≤ qj + 1 < n + 1. (10)

Case 4. m > 1. In this case, since mp1 · · · pk | n + 2, we get m = pc1
1 · · · p

ck
k , where ci + 1 ≤ ai, for i ∈ [1, k].

Thus z(qj) = pc1+1
1 · · · pck+1

k , but keep in mind that z(qj) - p−1
i (n + 2) and so ci + 1 > ai − 1. We then

conclude that ai − 1 < ci + 1 ≤ ai yielding ci + 1 = ai, for all i ∈ [1, k]. Hence z(qj) = n + 2 and similarly to
the previous case, we obtain the contradiction that n + 2 = z(qj) ≤ qj + 1 < n + 1. This completes the proof of
our key assertion.

Let p be a prime with such a property, i.e., such that z(q) | (n + 2)/p for all prime factors q of n.
We claim that n | F(n+2)/p. In fact, suppose that q | n, then q 6= 5 (otherwise, 5 | n | Fn+2 and 5 would
divide both n and n + 2). So, we need to consider two cases: if q 6= 2, then Lemma 3 gives

νq

(
Fn+2

p

)
= νq

(
n + 2

p

)
+ νq(Fz(q)) = νq(Fz(q)) ≥ νq(n),

where we used that νq((n + 2)/p) = 0 (because q | n and gcd(n, n + 2) = 1 or 2) and the fact that
νq(n) ≤ νq(Fz(q)) = νq(Fn+2) (since n | Fn+2).

If q = 2, then 2 divides both n and n + 2. First, let us show that n has odd prime factors (keep
in mind that n is composite). In order to prove that, suppose the contrary, i.e., that n = 2s for some
s > 2. If z(n) = n + 2, then z(2s) = 2(2s−1 + 1). On the other hand, Theorem 1.1i of [17] gives
z(Fs

m) = mFs−1
m /2 for m ≡ 3 (mod 6) and s ≥ 3. Taking m = 3, we get z(2s) = 3 · 2s−2 leading to

equation 2(2s−1 + 1) = 3 · 2s−2, which clearly has no solution for positive integers s (because s = 3,
but 23−1 + 1 6= 3). Summarizing, n has at least one odd prime factor.

In addition, 2 | n | Fn+2, implying that 3 | n + 2. Therefore, n + 2 ≡ 0 (mod 6). Thus,

ν2(Fn+2) =

{
3, if n + 2 ≡ 6 (mod 12);

ν2(n + 2) + 2, if n + 2 ≡ 0 (mod 12),

When 12 | n + 2, then ν2(n) = 1. Since 3 | (n + 2)/p, then ν2(F(n+2)/p) ≥ 1 = ν2(n). So, the case
that requires an extra care is when n + 2 ≡ 6 (mod 12). In this occasion, we shall claim that the prime
p in the key fact can be taken different from 2. Indeed, by repeating the arguments in the proof of that
fact, we get n = 2b1 qb2

2 · · · q
bs
s , n + 2 = 2a1 pa2

2 · · · p
ak
k and p2 · · · pk | z(qj). Therefore, z(qj) = rp2 · · · pk

for some positive integer r. If r = 1, then we obtain ai = 1 for i ∈ [2, k] and so n + 2 = 2a1 z(qj).
Since gcd(n, n + 2) = 2 and 4 | n (because n ≡ 4 (mod 12)), one has that a1 = 1, leading to the
following contradiction:

n + 2 = 2z(qj) ≤ 2(qj + 1) < n + 2,

where, since qj > 2 (otherwise n = 4) and 4 | n, then n ≥ 4qj > 2qj. Case r > 1 can be similarly
handled.

Going back to the proof that n | F(n+2)/p, now supposing p 6= 2, we still need to consider two subcases:
First, note that, in any case, n | Fn+2 leads to ν2(n) ≤ ν2(Fn+2) = 3, for n + 2 ≡ 6 (mod 12).

The last congruence can also be written as (n + 2)/p = 6(2t + 1)/p for some positive integer t.

Subcase 1. p > 3. In this case, p divides 2t + 1 and so 2t + 1 = hp, for some odd integer h.
Hence, (n + 2)/p ≡ 6h ≡ 6 (mod 12), yielding ν2(F(n+2)/p) = 3 ≥ ν2(n) (by Lemma 3).

Subcase 2. p = 3. In this case, we have (n + 2)/3 = 2(2t + 1). Since 2 | n implies that 3 | (n + 2)/3
(key fact), then 3 divides 2t + 1 and thus 6 | (n + 2)/3. By Lemma 3, ν2(F(n+2)/3) ≥ 3 ≥ ν2(n).

This finishes the proof that ν2(n) ≤ ν2(F(n+2)/p), for some prime p.
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In conclusion, we get that n | F(n+2)/p, which leads (by Lemma 2) to the following absurdity:

n + 2 = z(n) | n + 2
p

< n + 2.

The proof is then complete.

3.3. Proof of Theorem 3

Let us only consider the case ` = 5 (case ` = 6 can similarly be handled). The proof splits into
two parts:

Part 1. If n = 5p, where z(p) = p + 1, then z(n) = n + 5 (the “if” part). In fact, 5 | Fn+5 (because
5 | Fm if and only if 5 | m); p also divides Fn+5, since z(p) = p + 1 | n + 5 = 5(p + 1) and
so 5p = n | Fn+5. To complete the proof, it suffices to prove that n | Fj implies j ≥ n + 5.
If 5p = n | Fj, then both 5 and z(p) = p + 1 divides j. Therefore, since gcd(5, p + 1) = 1,
5(p + 1) | j yielding j ≥ 5(p + 1) = n + 5 as claimed.

Part 2. If z(n) = n + 5, then n = 5p, where p is a prime number with z(p) = p + 1 (the “only if”
part). First, we claim that if z(n) = n + 5, then 5 | n. On the contrary, i.e., if 5 - n, we can
repeat the same construction as in the proof of the key fact of previous section to find a
prime p, such that if q | n, then z(q) | (n + 5)/p. Similarly to that section, we would get the
absurdity of n dividing F(n+5)/p, where the useful here is the fact that if q | n, then νq(p) = 0,
since gcd(n, n + 5) = 1.

Thus, we can write n = 5am, where gcd(5, m) = 1. Since n | Fn+5, we claim that a = 1. In fact,
we would otherwise have the following absurdity:

1 < a = ν5(n) ≤ ν5(Fn+5) = ν5(n + 5) = ν5(5(5a−1m + 1)) = 1,

where we used Lemma 3. Therefore, n = 5m, so it suffices to prove that z(m) = m + 1 (since this is
implied in the primality of m).

Since 5m | F5(m+1), then m | F5(m+1). Let q 6= 2 be a prime factor of n (observe that q 6= 5); then,
Lemma 3 gives

νq(F5(m+1)) = νq(5(m + 1)) + νq(Fz(q)) = νq(m + 1) + νq(Fz(q)) = νq(Fm+1).

Thus, νq(m) ≤ νq(Fm+1), for all odd primes q. If q = 2, we use Lemma 3 together with the fact that

• 3 | m + 1 if and only if 3 | 5(m + 1)
• m + 1 ≡ 3 (mod 6) if and only if 5(m + 1) ≡ 3 (mod 6) (since 15 ≡ 3 (mod 6))
• m + 1 ≡ 6 (mod 12) if and only if 5(m + 1) ≡ 6 (mod 12) (since 30 ≡ 6 (mod 12))
• m + 1 ≡ 0 (mod 12) if and only if 5(m + 1) ≡ 0 (mod 12),

to obtain that ν2(F5(m+1)) = ν2(Fm+1) and so ν2(m) ≤ ν2(Fm+1).
In conclusion, we proved that m | Fm+1 and, by Lemma 2, z(m) | m + 1. To derive a contradiction,

suppose that z(m) 6= m + 1; then, there exists an integer s > 1, such that m | F(m+1)/s. Thus,
5m | 5F(m+1)/s | F5(m+1)/s (where we used Lemma 1d), and we would have the following absurdity,
by Lemma 2,

n + 5 = z(n) = z(5m) | 5
(

m + 1
s

)
=

n + 5
s

< n + 5.

The proof is then complete.
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4. Conclusions

In this paper, we were interested in function z(n), which is known as the order of appearance of
n in the Fibonacci sequence. We used techniques from p-adic valuation to completely describe the
arithmetic nature of solutions of equation z(n) = n + `, for ` ∈ {±1,±2, . . . ,±9}.
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