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Abstract: The need for smart and sustainable communication systems has led to the development
of mobile communication networks. In turn, the vast functionalities of the global system of mobile
communication (GSM) have resulted in a growing number of subscribers. As the number of users
increases, the need for efficient and effective planning of the “limited” frequency spectrum of the
GSM is inevitable, particularly in densely-populated areas. As such, there are ongoing discussions
about frequency (channel) allocation methods to resolve the challenges of channel allocation, which is
a complete NP (Nondeterministic Polynomial time) problem. In this paper, we propose an algorithm
for channel allocation which takes into account soft constraints (co-channel interference and adjacent
channel interference). By using the Manhattan distance concept, this study shows that the formulation
of the algorithm is correct and in line with results in the literature. Hence, the Manhattan distance
concept may be useful in other scheduling and optimization problems. Furthermore, this unique
concept makes it possible to develop a more sustainable telecommunication system with ease of
connectivity among users, even when several subscribers are on a common frequency.

Keywords: graph coloring; channel allocation; GSM; cellular frequency; communication

1. Introduction

Due to its vast functions, the global system of the mobile communication (GSM) cellular network
has experienced a rapid increase in the number of subscribers. As the number of users increases,
the need for efficient and effective planning of the GSM’s “limited” frequency spectrum is inevitable,
particularly in densely populated areas. As such, there are ongoing discussions regarding frequency
(channel) allocation methods to resolve the challenges of channel allocation, which presents itself as
an NP complete problem. Discourse on channel allocation has gained momentum in recent years,
so that demand for a ratio spectrum (which is and will always remain a scarce commodity) has
intensified [1–3]. Although the world has adopted faster communication technology, such as the 5G
network, the structure of the GSM is the foundation upon which most new network structures are
built, especially for voice and text messaging services [4,5]. While several advanced radio technologies
are now popular, cellular network providers in some developing countries still adopt the Manhattan
distance technique for GSM. The main reason for this is the high cost of new technologies such as
4G and 5G, which are yet be fully adopted. Nevertheless, since the range of cellular communication
is of the utmost importance, newer methods have been developed to further increase the range of
cellular networks. It is believed that the greater the level of optimization, the better it is for network
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communication and development in terms of cell-by-cell connectivity. In a study [6], a geometrical
technique for determining cell range was developed. The technique utilizes a so-called Voronoi
tessellation. The specific inputs needed for this technique include the location of the site, the beam
width of the horizontal antennae, and the antenna azimuths. While this method has been shown
to improve on the conventional technique, this improvement is still largely technically tied to the
GSM basics.

In GSM technology, the allocation or assignment of planning frequency is crucial in the modern
telecommunication regime. This is useful not only at the system commencement phase, but also at
later stages of network modification or expansion, which should cater for high levels of interference
and mass usage, among other factors [4–6]. Three channel allocation schemes have been identified in
the literature [7,8], namely dynamic, fixed, and hybrid. Nevertheless, assigning a frequency remains a
challenge [9]. Assume the existence of a set of channels which aids frequency transmission to a group of
transmitters. In the vicinity of a dual transmitter, individual transmitters must use a different channel
so as to maintain the needed transmission quality. The lowest uniqueness in frequencies assigned
to dual transmitters in proximity is a function of their level of interference. The goal of frequency
assignment is to locate the best possible assignment (given a frequency that is quite small) without
compromising the quality of communication. The channel allocation problem is a class issue which is
NP complete, implying that no existing algorithms (polynomial time) can solve this problem [10–13]

Definition 1: A graph is termed complete if it is simply constructed and undirected and has a
unique pair of vertices linked by a different edge. In this study, Cn denotes a hypothetical scenario of a
complete graph with n vertices, where a, b ∈ T, and (a, b) ∈ H represent the vertices [14].

Definition 2: Let U denote a graph that is undirected, let T represent a group of nodes, let E
represent a group of lines connecting the nodes, and let C represent a group of colors. The process of
mapping CT so that no corresponding vertices within the undirected graph, U, are allotted the same
channel is referred to as “graph coloring”.

Definition 3: A cellular type grid denoted by Z and having a size r × c, where c and r are
greater than or equal to 2, is derived from a bi-dimensional grid, A, which has a similar size. This
is done by augmenting the group of edges using diagonal connections that extend from left to right.
Specifically, each of the vertices of Z, represented by a = (n, m), is linked to another vertex, represented
by b = (n − 1, m − 1) and d = (n + 1, m + 1). As a result, the vertex now possesses a degree of 6,
excluding the vertices at the border regions.

Definition 4: A coloring algorithm, L(h,k), labels integers that are greater than 0 to the vertex U in
a manner that allows neighboring nodes to be color-labeled and to be separated by at least a distance h;
the same applies to the vertices (distance 2), which are also color-labeled and separated by at least a
distance k. This coloring algorithm reduces the differences between the most and the least used colors,
i.e., the span σh, k(U). The smallest span in other labeling functions is represented by λ h, k(U).

The rest of this paper is organized as follows. An overview of relevant literature regarding the
resolution of channel allocation problems is presented in Section 2. Section 3 describes the methodology.
Section 4 describes the experimental and evaluation procedures. Sections 5 and 6 give conclusions and
discuss possible future research on the subject, respectively.

2. Related Works

Recently, interest in algorithms which allow optimal channel allocation in cellular networks has
soared. Some such algorithms focus on minimizing the span of the channel used, while others focus
on minimizing interference [8,15]. In References [9,12,13,16] the authors studied cellular systems using
algorithms to allocate channels. According to [17], channel allocation methods include fixed, dynamic,
and hybrid types. Different approaches for channel allocation were discussed in [18], such as a central
approach, a distributed approach, a relaxed mutual approach, and a genetic algorithm approach.
In [17,18], a genetic algorithm was used to study channel allocation in wireless communication systems
and to try and develop solutions to challenges arising from channel assignment [19,20]. As a result,
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two strategies were developed: in the first “Genetic Algorithm Lock” (GAL), already assigned channels
are locked when a call is on hold [21]; in the second “Genetic Algorithm Switch” (GAS), there is the
possibility of switching a call to another channel during a connection phase [22]. Both of these studies
noted the need to allocate the correct channel, as well as the challenges associated with assigning
channels (especially in cellular networks) to new geographical settings so as to reduce the entire
span of frequency, which is a function of demand and interference-free constraints, referred to as
“Channel Assignment Problem 1” (CAP1), or to reduce interference, which depends on demand
constraints, called “Channel Assignment Problem 2” (CAP2). However, it was observed in [23] that
the used method, Genetic Algorithm (GA), was unable to reduce the reuse frequency, even though
channel allocation was carried out. By studying common allocation systems in mobile networks [24],
reference [25] developed a unique centralized channel allocation which could effectively use scarce
resource bandwidth. This model contains the so-called geographical model, which is essentially a
group of contiguous, non-overlapping cells, each of which has a hexagonal form and which together
form a parallelogram. The same study proposed a traffic model which mainly involves a dynamic
channel allocation system in which there are no fixed channels. Hence, as soon as a call arrives, it is
seen as a random process, and the function N (t) for all t ≥ 0 and the interval (0, t) is used to decode the
number of arriving calls. The procedure for determining the number of arriving calls N (t), t*0 is a
Poisson procedure that has an average rate λ. A modern algorithm technique, namely the “Particle
Swarm Optimization” [26–29], was adopted for channel allocation [30]. This technique depends on a
worldwide optimization that depends on “bird flocking” social behavior. It has the features of both
swarm-based and agent-based techniques, making it a rapid process, and its characteristics are different
to those of common evolutionary algorithms (EA) such as those presented in [31]. The evolutionary
algorithms mainly deal with channel allocation, and do not allow the minimization of frequency
reuse distance.

2.1. The L(2,1) Algorithm

Definition 5: Let U be a graph that is undirected and has a group of nodes, T, connected by some
groups of lines, E. Let the function f:T ≥ N, where f refers to the L(2,1) graph labeling of the undirected
graph. If for all a, b € T, |f(a) − f(b)| ≥ 2 if d(a, b) = 1 and |f(a) − f(b)| ≥ 1 if d(a, b) = 2 [32,33].

Several researchers have studied the L(2,1) coloring under different names, such as radio coloring,
or coloring. Reference [8] proved N-completeness in graph coloring using the L(2,1) graph condition.
According to [34], coloring a graph with this algorithm depends on the group of vertices T(G) and
the group of all non-negative integers such that |f(a) – f(b)| ≥ 1 if d(a, b) = 2 and |f(a) – f(b)| ≥ 2 if
d(a, b) = 1 [35,36]. The clique and algorithm for the L(2,1) coloring was proposed by [2] for a cellular
network with n rows and m columns. Nine colors were used to color the L(2,1) clique. For this
labeling, if n ≥ 4 and m ≥ 4, or n ≥ 3 and m ≥ 5 or n ≥ 5 and m ≥ 3, color a node x = (n, m) with
color f(a) = (3n + 2m) % 9, where x is a vertex with n and m rows and columns, respectively. Figure 1
shows the numbers of colors used for the L(2,1) coloring, while Figures 2 and 3 show some matrices
colored with the L(2,1) coloring.

Future Internet 2019, 11, x FOR PEER REVIEW 43 of 15 

as a central approach, a distributed approach, a relaxed mutual approach, and a genetic algorithm 

approach. In [17,18], a genetic algorithm was used to study channel allocation in wireless 

communication systems and to try and develop solutions to challenges arising from channel 

assignment [19,20]. As a result, two strategies were developed: in the first “Genetic Algorithm Lock” 

(GAL), already assigned channels are locked when a call is on hold [21]; in the second “Genetic 

Algorithm Switch” (GAS), there is the possibility of switching a call to another channel during a 

connection phase [22]. Both of these studies noted the need to allocate the correct channel, as well as 

the challenges associated with assigning channels (especially in cellular networks) to new 

geographical settings so as to reduce the entire span of frequency, which is a function of demand and 

interference-free constraints, referred to as “Channel Assignment Problem 1” (CAP1), or to reduce 

interference, which depends on demand constraints, called “Channel Assignment Problem 2” 

(CAP2). However, it was observed in [23] that the used method, Genetic Algorithm (GA), was unable 

to reduce the reuse frequency, even though channel allocation was carried out. By studying common 

allocation systems in mobile networks [24], reference [25] developed a unique centralized channel 

allocation which could effectively use scarce resource bandwidth. This model contains the so-called 

geographical model, which is essentially a group of contiguous, non-overlapping cells, each of which 

has a hexagonal form and which together form a parallelogram. The same study proposed a traffic 

model which mainly involves a dynamic channel allocation system in which there are no fixed 

channels. Hence, as soon as a call arrives, it is seen as a random process, and the function N (t) for all 

t ≥ 0 and the interval (0, t) is used to decode the number of arriving calls. The procedure for 

determining the number of arriving calls N (t), t*0 is a Poisson procedure that has an average rate λ. 

A modern algorithm technique, namely the “Particle Swarm Optimization” [26–29], was adopted for 

channel allocation [30]. This technique depends on a worldwide optimization that depends on “bird 

flocking” social behavior. It has the features of both swarm-based and agent-based techniques, 

making it a rapid process, and its characteristics are different to those of common evolutionary 

algorithms (EA) such as those presented in [31]. The evolutionary algorithms mainly deal with 

channel allocation, and do not allow the minimization of frequency reuse distance.  

2.1. The L(2,1) Algorithm 

Definition 5: Let U be a graph that is undirected and has a group of nodes, T, connected by some 

groups of lines, E. Let the function f:T ≥ N, where f refers to the L(2,1) graph labeling of the undirected 

graph. If for all a, b € T, |f(a) − f(b)| ≥ 2 if d(a, b) = 1 and |f(a) − f(b)| ≥ 1 if d(a, b) = 2 [32,33]. 

Several researchers have studied the L(2,1) coloring under different names, such as radio 

coloring, or coloring. Reference [8] proved N-completeness in graph coloring using the L(2,1) graph 

condition. According to [34], coloring a graph with this algorithm depends on the group of vertices 

T(G) and the group of all non-negative integers such that |f(a) – f(b)| ≥ 1 if d(a, b) = 2 and |f(a) – f(b)| 

≥ 2 if d(a, b) = 1 [35,36]. The clique and algorithm for the L(2,1) coloring was proposed by [2] for a 

cellular network with n rows and m columns. Nine colors were used to color the L(2,1) clique. For 

this labeling, if n ≥ 4 and m ≥ 4, or n ≥ 3 and m ≥ 5 or n ≥ 5 and m ≥ 3, color a node x = (n, m) with color 

f(a) = (3n + 2m) % 9, where x is a vertex with n and m rows and columns, respectively. Figure 1 shows 

the numbers of colors used for the L(2,1) coloring, while Figures 2 and 3 show some matrices colored 

with the L(2,1) coloring.  

 

Figure 1. The nine-color spectrum used for the L(2,1) coloring. Figure 1. The nine-color spectrum used for the L(2,1) coloring.



Future Internet 2019, 11, 186 4 of 14Future Internet 2019, 11, x FOR PEER REVIEW 44 of 15 

 

Figure 2. A 5 × 5 cellular graph tilled using the L(2,1) coloring. 

 

Figure 3. A 7 × 7 cellular graph network matrix colored with the L(2,1) coloring. 

2.2. The L(2,1,1) Algorithm 

Definition 6: Let U be a graph which is undirected and has a group of vertices T and a group of 

edges E. Let the function f:T ≥ N, where f is a L(2,1,1) labeling of U, if for all a, b € T, |f(a) − f(b)| ≥ 2 

if d(a, b) = 1, |f(a) − f(b)| ≥ 1 if d(a, b) = 2 and the distance between colors assigned to a, b differs by 

at least two units in the color spectrum [7,11]. 

Figure 4 shows the colors used for the labeling, while Figure 5 shows the clique of the labeling. 

The reuse distance for this labeling is four (i.e.,  = 4). According to [16], a graph’s coloring problem, 

which is the problem of assigning colors to certain nodes of a graph based on some constraints, can 

be solved by using a clique; this clique is subsequently colored using an algorithm that is suitable for 

this purpose. The same method of clique coloring can be adopted in a matrix of any size in a cellular 

graph. Figure 6 shows the L(2,1,1) labeling of a 5 × 5 network graph, while Figure 7 shows a 7 × 7 

network graph colored using the L(2,1,1) coloring. In formulation, the parities of i and j are 

considered, with the modulus (represented by %) being used in the formulation to achieve the 

optimal coloring of the clique. 

 

Figure 4. Coloring spectrum used for the graph. 

Figure 2. A 5 × 5 cellular graph tilled using the L(2,1) coloring.

Future Internet 2019, 11, x FOR PEER REVIEW 44 of 15 

 

Figure 2. A 5 × 5 cellular graph tilled using the L(2,1) coloring. 

 

Figure 3. A 7 × 7 cellular graph network matrix colored with the L(2,1) coloring. 

2.2. The L(2,1,1) Algorithm 

Definition 6: Let U be a graph which is undirected and has a group of vertices T and a group of 

edges E. Let the function f:T ≥ N, where f is a L(2,1,1) labeling of U, if for all a, b € T, |f(a) − f(b)| ≥ 2 

if d(a, b) = 1, |f(a) − f(b)| ≥ 1 if d(a, b) = 2 and the distance between colors assigned to a, b differs by 

at least two units in the color spectrum [7,11]. 

Figure 4 shows the colors used for the labeling, while Figure 5 shows the clique of the labeling. 

The reuse distance for this labeling is four (i.e.,  = 4). According to [16], a graph’s coloring problem, 

which is the problem of assigning colors to certain nodes of a graph based on some constraints, can 

be solved by using a clique; this clique is subsequently colored using an algorithm that is suitable for 

this purpose. The same method of clique coloring can be adopted in a matrix of any size in a cellular 

graph. Figure 6 shows the L(2,1,1) labeling of a 5 × 5 network graph, while Figure 7 shows a 7 × 7 

network graph colored using the L(2,1,1) coloring. In formulation, the parities of i and j are 

considered, with the modulus (represented by %) being used in the formulation to achieve the 

optimal coloring of the clique. 

 

Figure 4. Coloring spectrum used for the graph. 

Figure 3. A 7 × 7 cellular graph network matrix colored with the L(2,1) coloring.

2.2. The L(2,1,1) Algorithm

Definition 6: Let U be a graph which is undirected and has a group of vertices T and a group of
edges E. Let the function f:T ≥ N, where f is a L(2,1,1) labeling of U, if for all a, b € T, |f(a) − f(b)| ≥ 2 if
d(a, b) = 1, |f(a) − f(b)| ≥ 1 if d(a, b) = 2 and the distance between colors assigned to a, b differs by at
least two units in the color spectrum [7,11].

Figure 4 shows the colors used for the labeling, while Figure 5 shows the clique of the labeling.
The reuse distance for this labeling is four (i.e., φ = 4). According to [16], a graph’s coloring problem,
which is the problem of assigning colors to certain nodes of a graph based on some constraints, can be
solved by using a clique; this clique is subsequently colored using an algorithm that is suitable for
this purpose. The same method of clique coloring can be adopted in a matrix of any size in a cellular
graph. Figure 6 shows the L(2,1,1) labeling of a 5 × 5 network graph, while Figure 7 shows a 7 × 7
network graph colored using the L(2,1,1) coloring. In formulation, the parities of i and j are considered,
with the modulus (represented by %) being used in the formulation to achieve the optimal coloring of
the clique.
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For the L(2,1,1) graph coloring, [16] proposed the following algorithm: for n rows and m columns,
if n ≥ 4 and m ≥ 4, then the color f(a) is assigned to a node G = (i, j) thus:

0 if (i + j) = 2 % 6, n is even, and m is even; 1 if (i + j) = 0 % 6, n is even, and m is even;
2 if (i + j) = 4 % 6, n is even, and m is even; 3 if (i + j) = 1 % 6, n is odd, and m is even;
4 if (i + j) = 3 % 6, n is odd, and m is even; 5 if (i + j) = 5 % 6, n is odd, and m is even;
6 if (i + j) = 5 % 6, n is even, and m is odd; 7 if (i + j) = 2 % 6, n is odd, and m is odd;
8 if (i + j) = 4 % 6, n is odd, and m is odd; 9 if (i + j) = 1 % 6, n is even, and m is odd;
10 if (i + j) = 3 % 6, n is even, and m is odd; 11 if (i + j) = 0 % 6, n is odd, and m is odd.

3. Method

Definition 7: Let U represent a graph which is not directed and has a group of vertices and edges
represented by T and E, respectively. Let the function f:T ≥N, where f is a L(3,1) labeling of U, if for
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all a, b € T, |f(a) − f(b)| ≥ 3 if d(a, b) = 1 and |f(a) − f(b)| ≥ 1 if d(a, b) = 3. For this labeling, a pair of
vertices with a pair of consecutive colors should be separated by a minimum of one unit, while vertices
with the same color must be separated by at least three units. Figure 8 shows the flowchart for the
formulation of the L(3,1) algorithm.
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Proposition 1: To color the graph U = (T, E) (which is undirected), we use L(3,1), λ = 12.
Proof: Given the cellular grid Z = (T, E) from definition 3, we obtain two different graphs: a

subgraph D of Z, as shown in Figure 9, and an augmented graph UC,4 = (T, E’). A clique is developed
in UC,4 by all of the vertices from Z, with each vertex assigned a unique color; hence, λ(Z) = 12. Hence,
for all r, if a cellular grid exists with n rows and m columns, if n ≥ 7 and m ≥ 9, then the L(3,1) coloring
has the function f(a) = ((7n + 9m) % 12)k �.
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Hence, the formulation of the L(3,1) algorithm is: if n ≥ 7 and m ≥ 9, then the following colors
representing f(a) can be assigned to each vertex U = (n, m):

0 if (7n + 9m) % 12 ≡ 0 % 12 and both i and j are even; 9 if (7n + 9m) % 12 ≡ 9 % 12, i is even, and j
is odd; 6 if (7n + 9m) % 12 ≡ 6 % 12 and both i and j are even; 3 if (7n + 9m) % 12 ≡ 3 % 12 and both i
and j are even; 7 if (7n + 9m) % 12 ≡ 7 % 12 and both i and j are even; 4 if (7n + 9m) % 12 ≡ 4 % 12 and
both i and j are odd; 1 if (7n + 9m) % 12 ≡ 1 % 12, i is odd, and j is even; 10 if (7n + 9m) % 12 ≡ 10 % 12
and both i and j are odd; 2 if (7n + 9m) % 12 ≡ 2 % 12 and both i and j are even; 11 if (7n + 9m) % 12 ≡
11 % 12, i is even, and j is odd; 8 if (7n + 9m) % 12 ≡ 8 % 12 and both i and j are even; and 5 if (7n + 9m)
% 12 ≡ 5 % 12, i is even, and j is odd.

The vertex numbering (for a 10 × 10 matrix) and color spectrum for the L(3,1) algorithm are shown
in Table 1. Using the formulation for L(3,1) generated in the previous section, m × n matrix grids are
colored using the color spectrum shown in Figure 10. A 5 × 5 network graph colored using the L(3,1)
labeling is presented in Figure 11, while Figure 12 shows a 10 × 10 network graph colored using the
L(3,1) labeling.

Table 1. Vertex numbering of the L(3,1) algorithm (for a 10 × 10 matrix) with n row and m column.

(n+0),
(m+0)

(n+1),
(m+0)

(n+2),
(m+0)

(n+3),
(m+0)

(n+4),
(m+0)

(n+5),
(m+0)

(n+6),
(m+0)

(n+7),
(m+0)

(n+8),
(m+0)

(n+9),
(m+0)

(n+0),
(m+3)

(n+1),
(m+3)

(n+2),
(m+3)

(n+3),
(m+3)

(n+4),
(m+3)

(n+5),
(m+3)

(n+6),
(m+3)

(n+7),
(m+3)

(n+8),
(m+3)

(n+9),
(m+3)

(n+0),
(m+2)

(n+1),
(m+2)

(n+2),
(m+2)

(n+3),
(m+2)

(n+4),
(m+2)

(n+5),
(m+2)

(n+6),
(m+2)

(n+7),
(m+2)

(n+8),
(m+2)

(n+9),
(m+2)

(n+0),
(m+1)

(n+1),
(m+1)

(n+2),
(m+1)

(n+3),
(m+1)

(n+4),
(m+1)

(n+5),
(m+1)

(n+6),
(m+1)

(n+7),
(m+1)

(n+8),
(m+1)

(n+9),
(m+1)

(n+0),
(m+4)

(n+1),
(m+4)

(n+2),
(m+4)

(n+3),
(m+4)

(n+4),
(m+4)

(n+5),
(m+4)

(n+6),
(m+4)

(n+7),
(m+4)

(n+8),
(m+4)

(n+9),
(m+4)

(n+0),
(m+7)

(n+1),
(m+7)

(n+2),
(m+7)

(n+3),
(m+7)

(n+4),
(m+7)

(n+5),
(m+7)

(n+6),
(m+7)

(n+7),
(m+7)

(n+8),
(m+7)

(n+9),
(m+7)

(n+0),
(m+6)

(n+1),
(m+6)

(n+2),
(m+6)

(n+3),
(m+6)

(n+4),
(m+6)

(n+5),
(m+6)

(n+6),
(m+6)

(n+7),
(m+6)

(n+8),
(m+6)

(n+9),
(m+6)

(n+0),
(m+5)

(n+1),
(m+5)

(n+2),
(m+5)

(n+3),
(m+5)

(n+4),
(m+5)

(n+5),
(m+5)

(n+6),
(m+5)

(n+7),
(m+5)

(n+8),
(m+5)

(n+9),
(m+5)

(n+0),
(m+8)

(n+1),
(m+8)

(n+2),
(m+8)

(n+3),
(m+8)

(n+4),
(m+8)

(n+5),
(m+8)

(n+6),
(m+8)

(n+7),
(m+8)

(n+8),
(j+8)

(n+9),
(m+8)

(n+0),
(m+11)

(n+1),
(m+1)

(n+2),
(m+11)

(n+3),
(m+11)

(n+4),
(m+11)

(n+5),
(m+11)

(n+6),
(m+11)

(n+7),
(m+11)

(n+8),
(j+11)

(n+9),
(m+11)
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Figure 12. A 10 × 10 matrix cellular grid colored using the L(3,1) coloring.

4. Results and Discussion

4.1. Checking the Correctness of the L(3,1) Coloring Algorithm

To prove the correctness of the coloring algorithms, we adopted the Manhattan distance
concept [33]. To prove that successive colors have a spacing equal to 2, an assessment of the
smallest distance separating consecutive colors was performed. Table 2 shows the parities of i and j.
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Table 2. Relationships between successive vertices for the L(3,1) coloring algorithm.

Consecutive Colors Manhattan Distance i Parity j Parity

(0,1) ≥3 even, odd even, even
(1,2) ≥3 odd, even even, even
(2,3) ≥3 even, even even, odd
(3,4) ≥3 even, odd odd, odd
(4,5) ≥3 odd, even odd, odd
(5,6) ≥3 even, even odd, even
(6,7) ≥3 even, odd even, even
(7,8) ≥3 odd, even even, even
(8,9) ≥3 even, odd even, even
(9,10) ≥3 odd, odd even, odd

(10,11) ≥3 odd, even odd, odd

As shown in Table 2, each pair of consecutive colors [(0,1), (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8),
(8,9), (9,10) and (10,11)] has a Manhattan distance of at least 3. According to Table 1, the lowest spacing
between colors should be at least 2. Other sets of successive color pairs, such as (0,1), (3,4), (4,5), (7,8),
and (9,10), have a Manhattan distance of at least 2 and have a similar parity for the n and m coordinates
of both of their component colors. Note that in Figure 14, any random vertex (n, m) and another
vertex (n’, m’) have a Manhattan distance of 2. The separation between them will not be less than 1,
except when n and n’, or m and m’, have unique parities. Hence, these two vertices are separated
by a minimum of 2 coloring units. It can thus be deduced that the distance between two vertices
possessing the same color is ≥3. From the function of a vertex (a) of the L(3,1) algorithm, it is possible
to infer that vertices with similar colors also possess similar parities for coordinates i or j. As shown
in Table 2, none of the parity pairs (i and j coordinates) for the consecutive color pairs are the same.
Therefore, from these observations, it can be seen that the vertices with the same color are separated by
a distance of more than three units. This implies that the second definition holds true. Hence, the f(a)
coloring of L(3,1) holds true for a given cellular graph matrix. Additionally, it can be observed from
Figure 14 that the distance between two vertices of the same color is at least four units. Thus, the reuse
distance is four (i.e., σ = 4), which satisfies the third condition for correctness. This evaluation of the
Manhattan distance and the minimum distance between pairs of consecutive colors therefore proves
the correctness of the L(3,1) algorithm.

4.2. Design of Channel Group Allocation

Figure 13 shows a hypothetical design procedure for channel allocation sets to cellular base
stations, where there are 12 channels in a cell cluster (i.e., N = 12).Future Internet 2019, 11, x FOR PEER REVIEW 50 of 15 
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Figure 13. Hypothetical design of a cellular grid labeled with the L(3,1) coloring algorithm.

Considering a circular section of the cluster segment from Figure 14, the reuse distance can be
calculated for the grid cells. The center spread between two co-channel cells is known as the reuse
distance. The cluster size in the grid as shown in Figure 14 is equal to 12.
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Figure 14. Description of cell cluster.

Co-channel reuse means that within a specific area of coverage there are many cells utilizing a
similar group of channels [37]. Such cells are called co-channel cells. Co-channel cells also exhibit
interference signals, which are referred to as co-channel interference. The only way to eliminate
co-channel interference is by ensuring that the cells are separated by a sufficient distance [38]. In [39],
the authors showed that in situations where cell sizes and base station power transmission are equal,
the ratio of co-channel interference is often not a function of the power transmitted, but rather, that it
depends on the cell radius (R) and the center spread of the nearest co-channel cells (D).

4.3. Method for Calculating the Reuse Distance

The method for calculating the distance ‘D’ from the center of one co-channel cell to the other is as
explained as follows; given that A and B are co-channel cells, θ is the angle from one co-channel to the
other. Therefore,

D2 = A2
− 2AB cos(θ) + B2 (1)

D =

√(
i
√

3R
)2
+

(
j
√

3R
)2
− 2

(
i
√

3R
)(

j
√

3R
)

cos(120) (2)

D = R
√

3(i2 + j2 + i j) = R
√

3N (3)

The co-channel reuse ratio is given as

Q =
D
R

=
√

3N (4)

Thus, for the L(3,1) coloring algorithm of the hypothetical cellular grid shown in Figure 14,
the co-channel reuse ratio is

Q =
√

3×N (5)

where N is the cluster size and is equal to 12. Thus,

Q =
√

3× 12 =
√

36 = 6. (6)

Q is related to cluster size. In a six-sided geometry,

Q=D/R =
√

(3N). (7)

A small value of Q indicates a bigger capacity of the network grid due to the small cluster
magnitude. Meanwhile, a large value of Q implies a higher transmission quality as a result of reduced
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co-channel interference. Thus, the cellular grid in Figure 14 labeled with the L(3,1) algorithm improves
signal transmission quality and reduces co-channel interference.

4.4. Time Complexity for Selected Algorithms

The “Big O” notation was used to check the complexity of each of the L(h,k) algorithms studied,
with h = 1,2,3 and k = 1, for different input sizes. Table 3 indicates the running times of the algorithms
for different input sizes.

Table 3. Comparison of running times (in milliseconds) for each of the coloring algorithms for different
input sizes (number of subscribers).

Algorithm/Input Size L (1,1) L (2,1) L (3,1)

0 2 3 5
1 5 8 8
2 12 19 15
3 23 36 26
4 38 59 41
10 212 323 215
20 822 1243 825
40 3242 4883 3245
80 12,882 19,363 12,885

100 20,108 30,303 20,111
200 80,202 120,403 80,205

Figure 15 shows a comparison of the running times of the three L(h,k) algorithms for different input
sizes. The figure shows that, given a large amount of subscribers, the L(3,1) algorithm outperforms
the L(2,1) algorithm (i.e., the L(3,1) algorithm has a smaller running time). This indicates that when
there is a large number of users (e.g., in a densely populated area), the L(3,1) algorithm will perform
optimally for channel allocation.
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5. Conclusions

In an urban setting, network traffic demands are usually high, and network infrastructure operates
at maximum or near-maximum capacity. In such a setting, traffic patterns may at first appear random
and non-uniform. Such patterns are usually a function of time of day, population distribution, season,
weather, special events (fans at a football stadium, conferences, festivals), etc. This study investigated
various graph-coloring algorithms, and developed an improved and optimal L(3,1) graph-coloring
algorithm to color a hexagonal cellular graph matrix (m × n). This algorithm was based on the Fixed
Channel Allocation (FCA) scheme. Cell grids are permanently stationed and located at the same
distance from the nodes. This study resolved the challenge posed by co-channel interference by
creating a co-channel reuse distance, σ. Additionally, the problem caused by interference from adjacent
channels was resolved by imposing channel separation. It was observed that channel gap has an
inverse relationship with the distance between stations. Other constraints taken into account were
interference between adjacent channels, as well as co-channel interference. These findings suggest
appropriate changes that network providers can make to channel allocation to maximize channel
assignments which bring about transmission efficiency.

6. Future Work

The challenges posed by frequency interference, among other issues in modern day
telecommunication networks, raise questions about the sustainability of the global system of mobile
communication (GSM). Several techniques have been proposed to resolve issues related to frequency
interference, including the genetic algorithm and ordering heuristic. All of the existing methods which
aim to solve the problem of network interference have shortcomings. As a result, this study proposes a
new algorithm based on graph labeling. Sustainable communication networks bring socioeconomic
improvement [40–43]. Removing interference improves communication flow. The novel graph-labeling
technique for allocating frequency domains that is proposed in the present study can be used in future
investigative works [44,45]. Future research should also endeavor to investigate the synchronization of
graph coloring with other interference-reducing methods.
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