
 
doi: 10.36689/uhk/hed/2020-01-095 

 Statistical Simulation of Life Cycle Cost 

Jan VLACHÝ  

Czech Technical University in Prague, Prague, Czech Republic; jan.vlachy@cvut.cz 

Abstract: This paper contributes to literature aiming to improve corporate decision-making policies 

in times of depressed margins and increased business uncertainty. Starting from a case study based 

on actual servicing systems, it develops and applies a value-based decision-making model using a 

combination of life cycle costing and statistical simulation. It is shown that this approach generates 

meaningful results wherever there are alternative solutions available for component parts 

of servicing units, differing in a range of functional characteristics and involving risk. In contrast 

to conventional capital budgeting, such a model provides full assessment of contingent or intangible 

costs, such as the impacts of device reliability. Simulation results and their reliability can be analyzed 

using standard statistical methods. Sensitivity analyses are vital for the determination of relevant risk 

factors. 
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1. Introduction 

Several industries, including e.g. automotive, logistics and retail, are facing intensive competitive 

and regulatory pressures, squeeze on margins and business model disruption (KPMG 2019). This makes 

it more important than ever to pursue rigorous policies and use decision-making techniques with a clear 

focus on value, and considering exogenous, as well as endogenous uncertainty (Hellemo et al. 2018, 

Maier et al. 2019). In contrast to conventional capital budgeting, focusing on nonrecurring and time-

constrained investments and neglecting systemic feedbacks, various factors of risk can be incorporated 

into decision-making using statistical simulation combined with life cycle costing. 

These two methods are otherwise quite commonly used separately in different contexts, as shown 

by Dhillon (2010) and Mordechai (2011), respectively. For example, Fulton (2018) compared total life 

costs of electric and hybrid drive vehicles, Favi et al. (2018) analyzed the design process in shipbuilding 

and El-Akruti at al. (2016) determined the optimal repair and replacement policies for an electric arc 

furnace used in the steel industry using life cycle costing, while Vlachý (2018) analyzed the choice in 

product distribution and Dui et al. (2018) optimized the energy storage capacity for wind farms using 

statistical simulation. 

Their merging allows the temporal and functional normalization of mutually exclusive decisions 

(through life cycle costing) in the context of dynamic systems (through statistical simulation). Possible 

applications may then range from assessing decisions in potentially high-growth innovation industries 

to those relating to choices in product distribution, as shown by Vlachý (2017; 2018). Relevant in the 

present context is a defining feature of life cycle cost analysis, which may use relative - rather than 

absolute - valuation when selecting one of several solutions to a particular engineering design, resulting 

in considerably reduced input data requirements (Norris 2001; Dhillon 2010). This, in turn, facilitates the 

creation of a relatively simple and robust simulation model (Mun 2015). Furthermore, as explained by 

Norris (2001) and Kong and Frangopol (2003), and shown by Table 1, life cycle cost analysis may extend 

the scope of costs above those of Type I (direct) and Type II (indirect), used in conventional costing, to 

include Type III (contingent) and Type IV (intangible), which are typically relevant in systems featuring 

operational or strategic risks that can be best assessed using simulation (Vlachý 2009). It may be noted 

that somewhat less flexible alternatives - that would not be suitable for such a methodological integration 

- include closed/form analytical solutions and decision trees (Broadie and Detemple 2004). 



This paper solves a problem, initially based in logistics, but relevant also for other types of servicing 

systems. These typically contain various critical components that need to be periodically maintained, 

renewed or replaced to achieve a particular service standard at optimal cost, as demonstrated in the 

context of medical devices by Sinclair (2010) and, in more general terms, by Volkman (1997). When taken 

as individual capital budget decisions, they are thus relatively small, but their overall impact on the 

system is significant (Chang 2010). A model will be developed that can be further generalized and used 

for more broadly conceived problem classes. Finally, for the current problem, parametric sensitivities 

will be tested, addressing the errors-in-variables factor, whose relevance in economic models is discussed 

in detail by Chen et al. (2015). 

Summarily, the study thus aims to improve corporate decision-making, in particular involving 

situations featuring increased business uncertainty and depressed business margins. 

 

Table 1. Description of cost types. (source: adapted from Norris 2001 and Frangopol 2003) 

Cost type Description 

Type I (Direct) Direct costs of capital investment, labor, raw material, waste disposal; 

may include both recurring and non-recurring costs. 

Type II (Indirect) Indirect costs not allocated to the product or process; may include both 

recurring and non-recurring costs. 

Type III (Contingent) Contingent costs such as fines and penalties, personal injury or 

property damage liabilities, production or service disruption, 

competitive response, etc. 

Type IV (Intangible) Difficult to measure costs, including customer acceptance, customer 

loyalty, worker morale, community relations, corporate image. 

2. Methodology 

The case that will be solved is defined as follows: An essential component in a handling 

mechanism can be designed using two alternative technologies (A or B). Their characteristics differ in 

four life cycle phases, production of the component, its installation, its use in operation, and its 

disposal including dismounting. Generally speaking, technology A is more sophisticated and 

expensive, which involves higher costs of production, higher costs of installation, and the need to 

install an additional control component. It also has a shorter working life and worse reliability 

(i.e. higher probability of premature breakdown, which is negligible for a Type B component). On the 

other hand, due to improved controls and enhanced automatization, technology A decreases power 

consumption and reduces personnel costs. 

Several distinct operating assumptions are involved: Type A components can be refurbished, up 

to two times each, and there are defined costs (including opportunity costs) to each unscheduled 

service disruption. Each handling mechanism (which is otherwise the same regardless of the 

technology used in its component that is being evaluated) has a defined annual operating time and 

handling capacity, as well as a life expectation in terms of handled units. To avoid clearly purposeless 

component replacements just before the handling mechanism is due for retirement, they will be 

retained when the handling mechanism's life exceeds a pre-set number of handled units (this 

parameter is designated ξ). 

A summary of the model inputs, including the particular values used in the case, is provided 

in Table 2. 

 

 



Table 2. Model inputs summary. 

Parameter 

[unit] 
Description Value (Type A) Value (Type B) 

P [€] Component production cost 4,800 4,000 

I [€] Component installation cost 500 400 

C [€] Control device cost 1,500 (only installed once 

/ part of mechanism) 

N/A 

τ [units] Replacement time 175,000 200,000 

D [€] Disposal cost 500 500 

R [€] Refurbishment cost 1,800 N/A 

m Maximum number of component 

refurbishments 

2 0 

ξ [units] Maximum framework life for 

component replacement 

900,000 900,000 

X [€] Service disruption cost 900 N/A 

λ [units] Mean life expectation of 

component 

250,000 N/A 

ρ [units] Actual component life stochastic (exponential 

distribution with 

parameter λ) 

200,000 

 

When using life cycle costing, it is vital to determine a suitable functional unit. In the present case, 

the operation cycle is best defined as a number of processed units, which is a common quotient for the 

handling mechanism life, as well as for the life determinants its component, and becomes a common 

measure of service time. Accordingly, 100,000 processed units will be used as the model's functional 

unit. This also determines the discount rate; given the 8 % annual rate and the annual handling capacity 

of 160,000 processed units, the discount rate per 100,000 units amounts to 8 % × 100,000 / 160,000 = 5 % 

per functional unit. 

While all life cycle costs of Type B components are determined solely by deterministic Type I and 

Type II costs - and would thus be easy to assess using conventional budgeting techniques - a 

fundamentally different approach needs to be taken with the Type III costs involved in the use of Type 

A components and comprising statistically random processes describing the reliability of the 

component. Its life cycle costs will therefore be assessed using statistical simulation as illustrated 

by Figure 1. 

 



 
 

Figure 1. Life cycle simulation run process diagram for Type A component. 

 

3. Results 

Decision-making will be based on the functional unit life cycle cost differential of component 

Type A over Type B, which subtracts the non-operating functional unit costs of the two component 

types and adds their functional unit operating costs differential as in Equation (1). 

A-BLCC = ANOC - BNOC + A-BOC (1) 

Using the values listed in Table 1, the non-operating cost per functional unit (i.e. 100,000 processed 

units) of a Type B component is BNOC = € 2,550. 

The operating costs differential consists of energy savings and personnel cost savings. Both are in 

favor of Type A components (this implies a positive value of A-BOC). The differential assessment also 

requires a forecast of the wholesale energy price, which will initially be presumed to be € 60 / MWh. 

As each of the savings parameters uses different units of measure, they need to be standardized to the 

functional unit. Power consumption savings then amount to 60 × 1 × 100,000 / 10,000 = € 600 per 

functional unit and personnel savings to 1,200 × 100,000 / 160,000 = € 750 per functional unit, totaling 
A-BOC = € 1,350. 

The non-operating costs per functional unit of Type A components are generated by statistical 

simulation, resulting in a random distribution of the functional unit life cycle cost differential between 

the two component types as illustrated by Figure 2. 

  



 

Figure 2. Distribution of the component's life cycle cost differential. 

Significantly, the distribution mean is € 153 and its fifth percentile is € 9, which means that the 

more advanced Type A component outperforms Type B at a 95 % confidence level, and should 

therefore be preferred. 

4. Discussion 

The model has been subject to sensitivity analyses in respect to key input parameters and potential 

operating adjustments. Two parameter forecasts seem critical in terms of potential variable volatility 

or insufficient information: the exogenous energy price and the endogenous mean life expectation for 

a Type A component. 

Sensitivity analysis clearly indicates that the operating risk due to a potentially shorter component 

mean life is the more significant one of the two. Even in the rather extreme case of energy prices 

decreasing by 30 % (i.e. if the price fell down to € 42 / MWh), the use of Type A components would 

still be merited, while just a moderate increase of the break-down rate resulting in a mean life 

expectation of 218,000 processed units (down from 250,000 units) would be sufficient to reconsider 

such a decision. 

Conveniently, simulation can also be used to adjust the terms of operation, and thus suggest a 

means of mitigating this risk. Increasing the scheduled replacement times of the Type A components 

from 175,000 processed units to 200,000 processed units (assuming there would be no regulatory 

restrictions to such a mode of operation) would result in a highly positive mean cost differential 

favoring Type A even under the assumption of its reduced mean life expectancy. 

5. Conclusions 

Using a case study in the logistics servicing domain, this paper illustrated the applicable potential 

of combining life cycle costing techniques with statistical simulation in the context of servicing 

operations and the selection of alternative technological solutions in replacement chain situations. In 

particular, such an approach makes good sense when the technologies under consideration involve 

operationally dependent contingent costs, such as the breakdown frequencies analyzed herein. Other 

applications may similarly involve e.g. servicing time measures or processing feedbacks. 

In contrast to conventional capital budgeting, much broader scope of functional system 

characteristics may be considered within the framework of this methodology, and it is thus viable to 

integrate aspects of financial and operational analysis in a single decision-making framework. Even 

though such models are generally suitable for use by industry practitioners, the results must be 



carefully assessed in terms of input parameters' sensitivities, as well as correct interpretation, which 

seems to be its main limitation. 
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