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Abstract: The article is focused on a new modification of vehicle routing problem (VRP), which differs 

from linear VRP in two points. The first difference is the objective function which in case of linear 

VRP expresses the total travel costs whereas in nonlinear VRP it is the travel cost per unit volume 

that is represented by the nonlinear function being equal to linear-fractional function. The second 

difference is the set of nodes, which in linear VRP must be involved in the vehicle routes. The set of 

nodes in nonlinear VRP is divided into mandatory and optional ones. The mandatory nodes must be 

involved in the vehicle routes, the optional nodes can be either involved in the vehicle routes or 

neglected. Thus, the objective function of the nonlinear VRP is linear-fractional function. The first 

step is to linearize this function using Charles-Cooper transformation, and then solve the model using 

linear programming software. The methods are demonstrated on a numerical example. 
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1. Introduction 

Traditional formulation of VRP assumes n nodes, where the first node represents the depot and 

the remaining ones the customers. The merchandise is transported using the routes starting and 

ending in the depot. The transport itself is realized by the vehicles with certain capacity and the 

customer-node requests are given by the volume used for the containment of the requested 

merchandise in a given vehicle. The route length depends on the order of the nodes of a given route 

and can be calculated using the distance matrix between each pair of nodes. Instead of the node 

distance one can also calculate the transport cost of a given vehicle from one node to another. The aim 

is to minimize the total sum of route distances or eventually to minimize the transport cost of the routes 

using given vehicles.  

The solution procedure of VRP must ensure the following two conditions:  

a) All nodes are included at least in one of the routes.  

b) The sum requests of all nodes of a route must not exceed the capacity of the vehicle for this 

route.  

This problem can be formulated as integer linear programming model and solved using 

appropriate software tools. VRP and in general, linear integer programming problems, belong among 

NP hard problems, i.e. if the number of nodes is higher, in reality more than approx. 30 nodes, it is 

impossible to obtain optimal solution using standard LP integer solvers (branch and bound method) 

in a reasonable time. Except for mathematical models one can use heuristic methods such as nearest 

neighborhood method, insert method or savings method, which can help to obtain a suboptimal 

solution in reasonable time.   

There are many modifications of the conventional form of VRP, which arise as a results of 

merchandise transport in praxis (Laporte 1992). The following ones belong among the most interesting 

ones - VRP involving vehicles with different capacities and transport cost; VRP with more than one 

depot; split delivery VRP; VRP involving stochastic demand in nodes; VRP with time windows, where 

the time of vehicle arrival in the node must be inside to a certain time interval denoted as time window 

(Braysy and Gendreau 2005), (Desrochers et al. 1992), and others.    



The traditional VRP problem is described in the literature enough, heuristic methods are 

proposed, and a survey of these approaches is summarized in (Laporte 1992). Nonlinear vehicle 

routing problem (NVRP) we propose in this article differs from the classical one in two main points: 

a) The set of nodes is divided into two subsets consisting of either mandatory or optional nodes. 

The mandatory nodes along the designed vehicle route need to be served. We assume at least one 

of the nodes to belong to the subset of mandatory nodes. 

b) The objective function of the model is non-linear. 

NVRP is based on a real case study, in which the career has many orders with some of them being 

urgent, i.e. taking priority, while the others can be postponed unless the maximal expected delivery 

time is not exceeded. The order becomes a target of higher priority if its delivery time cannot be 

extended anymore and thus must be delivered to the customer as soon as possible. Given the fact that 

every day there are new orders coming up we might come across a situation when the number of items 

on the list of orders will grow as well and therefore it will be efficient to include the delayed orders in 

designed routes. On the other hand, if we involve all of the optional nodes in the routes the total route 

distance and the use of vehicle capacity might become inefficient. 

If we assume the objective function is of standard type, i.e. the total sum of all route distances, 

then the optimal solution would not involve the optional nodes as that would increase the objective 

function itself. In case we chose the objective function to be represented by the total transported 

volume, which needs to be maximized, on the contrary the optimal solution would involve all optional 

nodes, which as noted before would lead to inefficiency in route distance planning as well as in use of 

vehicle capacity. Based on these reasons we propose a form of objective function that represents the 

average route distance per transported volume unit. This function, defined as ratio of total route 

distance and total transported volume, will be minimized. The proposed problem will be first 

modelled assuming non-linear objective function, that is represented by the linear-fractional function 

and set of constraints, which is essentially identical to that of classical VRP.  

To find the solution for this non-linear problem we use Charles-Cooper transformation that 

converts our problem to a linear programming one. Despite the fact that the transformation process 

treats the binary variables the binary condition does not have to hold. Except for the mathematical 

model one can also modify the heuristic methods designed to solve the classical VRP. Finally, at the 

end of the article, we present a numerical solution to a problem demonstrating both approaches. 

2. Mathematical Model of NVRP 

Parameters of the model: 

n  the total number of nodes, 

m  the number of optional nodes; assume that nodes 2,3,…,m are optional nodes, nodes  m+1, 

 m+2,…, n are compulsory nodes, and node 1 is depot, 

𝑐𝑖𝑗   the distance between node i and node j, 

𝑞𝑖   the demand of node i, 

W  the capacity of vehicle. 

Variables of the model are:  

𝑥𝑖𝑗  the binary variable with value 1 if a vehicle goes from node i to node j, otherwise its value is 

zero,  

𝑢𝑗   the variables used in anti-cyclic constraints. 

 

The objective function (1) is the ratio where the denominator expresses the total amount of loads 

of all routes and the numerator is the total length of all routes. Equation (2) ensures that compulsory 

nodes will be entered and its demand 𝑞𝑗 is covered. If the vehicle enters a node it has to leave it – it is 

ensured by constraints (3). Standard anti-cyclic conditions are in (4). Inequality (5) assures that the 

capacity of vehicles is not exceeded. 

 



Mathematical model of NVRP can be written as follows: 
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3. Charnes-Cooper Transformation of Linear Fractional Program to Linear Program 

Model (1)-(6) is not linear in its objective function but can be moved into a linear program rather 

easily using Charnes-Cooper transformation. Let us assume a general fractional program as follows: 

 

𝑔(𝑥) =
𝑐𝑇𝑥 + 𝑑
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where 𝑒𝑇𝑥 + 𝑓 > 0  for all feasible solutions and the feasible set is nonempty. x is a vector of variables 

and G and A are metrices. Under these assumptions, the linear fractional program (7)-(10) can be 

transformed into equivalent linear program (11)- (15) - see e.g. (Martos 1975) and (Barros 1998): 
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𝑥′ ≥ 0, 𝑡 ≥ 0  (15) 
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Now we can apply this transformation to NVRP (1)-(5), i.e. without binary constraint (6). The 

linear program after this transformation is formulated below - (16)-(21). 
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Original variables can be derived as 𝑥𝑖𝑗
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The mathematical model (16)-(24) is binary linear program and can be solved using conventional 

LP packages like GUROBI, CPLEX, etc.   

4. Numerical Example 

The proposed mathematical model was verified on an illustrative example. Consider 11 nodes 

where node 1 is a depot, and the capacity of each vehicle is W=100. The requirements of the nodes are  

q = (0 19 24 30 20 35 25 32 20 22 37). The distance matrix C is as below: 

 

0 13 6 55 93 164 166 168 169 241 212 

13 0 11 66 261 175 177 179 180 239 208 

6 11 0 60 97 168 171 173 174 239 209 

55 66 60 0 82 113 115 117 117 295 265 

93 261 97 82 0 113 115 117 118 333 302 

164 175 168 113 113 0 6 4 2 403 374 

166 177 171 115 115 6 0 8 7 406 376 

168 179 173 117 117 4 8 0 2 408 378 

169 180 174 117 118 2 7 2 0 409 379 

241 239 239 295 333 403 406 408 409 0 46 

212 208 209 265 302 374 376 378 379 46 0 

 



The optimal objective function of model (16)-(24) 𝑓′(𝑥) = 3 and the otimal value of variable 𝑡 =

 0.0058. Therefore, 𝑥′𝑖𝑗 = 0.0058, if  𝑦𝑖𝑗 = 1 otherwise 𝑥′𝑖𝑗 = 0. From optimal values of variables 𝑥′𝑖𝑗 ,

𝑦′𝑖𝑗  𝑎𝑛𝑑 𝑥𝑖𝑗  it is possible to derive that the optimal routes are: 

 

1. route: 1-3-2-4-1 with transport volume 73 and length of the route 138, 

2. route: 1-5-7-9-6-1 with transport volume 100 and length of the route 381, 

 

The total length of all routes is 519, and the total load is 173. The length on one unit of load is 3 

which is the optimal value of the objective function. 

5. Conclusions 

VRP is one of the most discussed optimization problems with variety of real-world applications. 

Traditional formulation of VRP is linear, i.e. linear objective function and linear set of constraints. In 

this paper, a new modification of VRP was introduced. This formulation was motivated by real-world 

study and, in our best of knowledge, it is original and unpublished elsewhere yet. The problem itself 

is non-linear in its objective function but an original way how to transform it into a linear program 

was proposed. The solution of the model was illustrated on a simple numerical example. Mathematical 

model (16)-(24) is hardly solvable for real instances even by using high-quality solvers as GUROBI or 

CPLEX. Therefore, future research will be focused on solving real examples of this nature using 

various heuristic methods and on their comparison.  

References 

Barros Ana Isabel. 1998. Discrete and fractional programming techniques for location models. Dordrecht: Kluwer 

Academic Publishers. https://doi.org/10.1007/978-1-4615-4072-4_1. 

Braysy Olli and Gendreau Michel. 2005. The vehicle routing problem with time windows, Part I. Route 

construction and local search algorithms. Transportation Science: 39(1), 104-118. 

https://doi.org/10.1287/trsc.1030.0056. 

Desrochers Martin, Desrosiers Jacques and Solomon M. Marius, 1992. A new optimization algorithm for the 

vehicle routing problem with time windows. Operations Research: 40, 342-354. 

https://doi.org/10.1287/opre.40.2.342. 

Laporte Gilbert, 1992. The vehicle routing problem: An overview of exact and approximate algorithms. European 

Journal for Operations Research: 59, 345-358. https://doi.org/10.1016/0377-2217(92)90192-C. 

Martos Bela. 1975. Nonlinear programming: Theory and methods. Amsterdam-Oxford: North-Holland Publishing. 

https://doi.org/10.1002/zamm.19760561116.    

 

 


