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Abstract: This paper presents the empirical research on comparison of two different approaches for 

Value at Risk (VaR) measurement. The research objective is to compare the accuracy of 

out-of-sample VaR forecasts between conditional and unconditional models. We examine four 

unconditional models: Gaussian, alpha-stable, Normal Inverse Gaussian (NIG) and Generalized 

Pareto (GP) distributions and four conditional models: Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model with Gaussian and Student’s t innovations, Exponentially 

Weighted Moving Average (EWMA) and conditional Extreme Value Theory (GARCH-EVT) 

approach. Calculations are performed on the basis of 5 world indices, 4 exchange rates and 4 

commodity futures and the results are presented for left and right distribution tails. Backtesting 

methods indicate the GARCH-EVT as the model that outperforms all others. 
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1. Introduction 

According to Basel Accords Value at Risk (VaR) plays a key role in calculation of regulatory 

capital for market risk. VaR is the maximum loss of a financial instrument or the entire portfolio X, 

that is not exceeded with a probability (confidence level) 1 − 𝛼 in a given period of time. Formally, it 

is defined by the formula: 

𝑉𝑎𝑅𝛼 = −sup⁡{𝑞|𝑃(𝑋 ≤ 𝑞) ≤ 𝛼}.                            (1) 

There are two methods which banks can use to measure VaR i.e. the standard approach (SA) and 

the internal models approach (IMA). The latter approach allows banks to use their own mathematical 

model to measure the market risk. The most popular and the simplest method is the 

variance-covariance method. Although, in practice, it is convenient to adopt the Gaussian paradigm, 

from a theoretical point of view, this is unacceptable. There are indisputable empirical properties of 

financial time series like leptokurtosis, the presence of fat tails of returns distribution, skewness and 

volatility clustering. Already in the sixties of the last century Benoit Mandelbrot (Mandelbrot 1963) 

rejected the normality of the distribution of returns and analyzed the alpha-stable distributions. Other 

distributions, such as generalized hyperbolic were the subject of other studies, including (Eberlein 

and Keller 1995; Barndorff-Nielsen 1997; Küchler et al. 1999). More sophisticated methods are derived 

from the Extreme Value Theory (EVT). EVT was applied for risk management in a number of 

publications e.g. (McNeil 1999; Embrechts et al. 1999; Gilli and Këllezi 2006). 

In recent years, the conditional heteroskedasticity models, GARCH (Generalized Autoregressive 

Conditional Heteroskedasticity), introduced by Tim Bollerslev (Bollerslev 1986) have gained much 

popularity in risk management analysis. The conditional models can capture the dynamics and the 

most important properties of asset returns, e.g. volatility clustering and leptokurtosis. None of 

models, however, cannot predict exactly when the risk appears extreme and each has its strengths 

and weaknesses. Although the unconditional models use the strong assumption that returns are 

independent and equally distributed (i.i.d.), financial institutions often prefer unconditional risk 



forecast methods to avoid undesirable frequent changes in risk limits for traders and portfolio 

managers (Danielsson and de Vries 2000). Moreover, trading strategies, which are continuously 

updated, generate high transaction cost (Cotter 2007). On the other hand, the conditional GARCH 

methodology implies more volatile risk forecasts than the unconditional approach, which is desirable 

when short horizons of investment, like one day (Dowd 2005) or intraday (Danielsson and Payne 

2000), are taken into account. A comprehensive review of Value at Risk methodologies present Abad 

et al. (2014). 

Finally, it seems, that it is not possible to clearly identify the most appropriate model and 

following (Gilli and Këllezi 2006) the choice between conditional and unconditional model should 

depend ultimately on the period for the analysis and type of risk measure. In this paper, we examine 

several models of VaR measurement. The aim of this study is to compare the accuracy of VaR 

forecasts between conditional and unconditional models. Similar studies were already performed in 

i.a. (Kuester et al. 2006; Baran and Witzany 2011; Choi and Min 2011; Just 2014) but the set of 

considered models was different than in this paper. We take advantage of following unconditional 

distributions: Gaussian, alpha-stable, Normal Inverse Gaussian (NIG) and Generalized Pareto (GP) 

and conditional models: Exponentially Weighted Moving Average (EWMA), GARCH with Gaussian 

and Student's t innovations and conditional Extreme Value Theory (GARCH-EVT). Estimations are 

based on various markets including 5 stock indices, 4 exchange rates and 4 commodity futures from 

the period 2000 – June 2019. We do calculations of VaR for long and short investor position. 

The remainder of this paper is organized as follows. Section 2 briefly summarizes different 

approaches to VaR measurement. Section 3 examines methods for testing the accuracy of VaR 

forecasts. In section 4 the data used in empirical study and the results of our research are described. 

Concluding remarks are provided in the final section.  

2. Methodology 

2.1. Unconditional Value at Risk 

VaR for a long position is a minus quantile of the loss distribution: 

𝑉𝑎𝑅𝛼 = −𝐹−1(𝛼),                                         (2) 

where 𝐹−1 is the inverse of cumulative distribution function of returns,⁡𝐹. For short position it is a 

1 − 𝛼 quantile of the distribution: 

𝑉𝑎𝑅1−𝛼 = 𝐹−1(1 − 𝛼).                                      (3) 

We briefly characterized the distributions which are used in our studies.  

Gaussian (normal) distribution is characterized by only two parameters, mean, 𝜇 ∈ ℝ  and 

standard deviation, 𝜎 > 0. The probability density function is of the form: 

𝑓𝑁𝑂𝑅𝑀(𝑥) =
1

√2𝜋𝜎
𝑒𝑥𝑝 {−
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2
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𝑥−𝜇

𝜎
)
2

}.                               (4) 

A lot of well-known desirable properties of the normal distribution make it the most useful 

distribution in finance. However, its tails are too thin to precisely measure a quantile of empirical 

distribution of returns. The tails decay very quickly (faster than exponentially), but it is still in use in 

practice to measure VaR. In this study it is used rather as a benchmark only. 

Alpha-stable distributions are a broad family of probability distributions which can capture 

skewness and heavy tails. Alpha-stable distributions contain the Cauchy, Gaussian and Lévy 

distributions. The class was introduced by Paul Lévy in 1924 (Lévy 1924). It was the first alternative to 

Gaussian distribution in finance (Mandelbrot 1963), and now is widespread in risk management, 

forecasting and econometrical analysis (Bradley and Taqqu 2003; Kabasinskas et al. 2009; Nolan 2009; 

Rachev et al. 2009). In the general case, the analytic form of distribution function does not exist, 

therefore it is defined by characteristic function: 



𝔼[𝑒𝑥𝑝⁡(𝑖𝑡𝑋)] = {
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            (5) 

The stable distribution is defined by four parameters. The most important parameter 𝛼 ∈ (0,2] is 

called stability index, parameter 𝛽 ∈ [−1,1] is a measure of skewness, 𝜏 ∈ ℝ is a position and 𝑐 > 0 

is a scale parameter. Parameter 𝛼 is responsible for the thickness of the tail. The lower its value is, the 

thicker the tail is. For 𝛼 ∈ (0,2) the second moment of the distribution does not exist, but for 𝛼 = 2 it 

is obtained the Gaussian distribution as a limit case. Alpha-stable family of distributions is closed 

under linear transformations, which means that the linear combination of random variables with 

alpha-stable distribution with the same index of stability , also has alpha stable distribution with that 

index.  

Normal Inverse Gaussian (NIG) distribution is a member of the broader class of distributions called 

generalized hyperbolic (GH) introduced in (Barndorff-Nielsen 1977). This distribution is widely 

applied in financial economics for modeling unconditional and conditional return distribution (Haas 

and Pigorsch 2009). Log density of NIG is concave in an interval around zero and convex in the tails. 

It is a typical property of financial returns which exhibits tail behavior that is heavier than log-linear 

(Barndorff-Nielsen 1997). The density of the NIG distribution is given by 

𝑓𝑁𝐼𝐺(𝑥) =
𝛼𝛿𝐾1(𝛼√𝛿

2+(𝑥−𝜇)2)

𝜋√𝛿2+(𝑥−𝜇)2
𝑒𝑥𝑝 (𝛿√𝛼2 − 𝛽2 + 𝛽(𝑥 − 𝜇)),                (6) 

where: 𝛼  and 𝛽  are shape parameters fulfilling condition 0 < |𝛽| ≤ 𝛼 , and 𝜇 ∈ ℝ,  ⁡𝛿 > 0  are 

respectively position and scale parameters. 𝐾1 is modified Bessel function of the third kind with 

index equal to one.  

Generalized Pareto (GP) distribution is one of two key distributions of Extreme Value Theory. The 

role of GP distribution in EVT is as a natural model for the excess distribution over high threshold. 

This is called Peaks over Threshold (POT) approach and it is based on Pickands-Balkema-de Haan 

Theorem (Balkema and de Haan 1974). For high threshold u, the conditional distribution function:  

𝐹𝑢(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢) =
𝐹(𝑥+𝑢)−𝐹(𝑢)

1−𝐹(𝑢)
,                       (7) 

converges to a generalized Pareto distribution. GP distribution is as follows 
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                        (8) 

where: β > 0, x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ – β/ξ for ξ < 0. The shape parameter, ξ divides distributions into 

three classes. Heavy tail distributions (e.g. alpha-stable, Student’s t) have ξ > 0 (Fréchet domain of 

attraction). Thin tail distributions (e.g. Gaussian, log-normal) have ξ = 0 (Gumbel domain of 

attraction). Distributions with finite right endpoint have ξ < 0 (Weibull domain of attraction). The 

unconditional cumulative distribution function of returns one obtain rearranging (7)–(8): 

𝐹(𝑥) = (1 − 𝐹(𝑢))𝐺𝜉,𝛽(𝑥)(𝑥 − 𝑢) + 𝐹(𝑢),⁡⁡⁡⁡𝑥 > 𝑢.                 (9) 

Replacing 𝐹(𝑢) by 𝐹̂(𝑢) = 1 − 𝑁𝑢/𝑛, where 𝑁𝑢 is a number of exceedances over threshold u and n is 

number of returns we obtain: 

𝐹̂(𝑢) = 1 −
𝑁𝑢
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𝛽
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VaR for short position (right tail) is easy obtainable by inverting the above equation: 

𝑉𝑎𝑅1−𝛼 = 𝑢 +
𝛽

𝜉
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−𝜉

− 1).                            (11) 

 

 



2.2. Conditional Value at Risk 

We assume following process of returns: 

𝑟𝑡 = 𝑡𝑡 ,  𝑡 ⁡~⁡𝑖. 𝑖. 𝑑. (0,1),                                  (12) 

where 𝑡 is conditional volatility and the innovations 𝑡 have distribution 𝐹.  

Conditional VaR computed for long position is as follows:  

𝑉𝑎𝑅𝛼 = −𝑡(1)𝐹
−1(𝛼),                                     (13) 

where 𝐹−1 is the inverse of cumulative distribution function 𝐹 and 𝑡(1) is one step ahead forecast 

of conditional standard deviation. For short position it is equal to: 

𝑉𝑎𝑅1−𝛼 = 𝑡(1)𝐹
−1(1 − 𝛼).                                 (14) 

We briefly characterized three such models which will be used in our study. 

GARCH model. There is a broad family of Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models but the most popular is GARCH(1,1) (Bollerslev 1986): 

𝑡
2 =  + 𝑟𝑡−1

2 + 𝑡−1
2 ,                                    (15) 

where: ,, ⁡ > 0, +  < 1. 

The parameters  and  represent the adjustments to past market shocks and volatility respectively. 

Exponentially Weighted Moving Average (EWMA) volatility model takes into account the property 

that the influence of any observation in financial time-series declines over time at the stable rate  >

0. The model was adopted in 1994 by U.S. investment bank JP Morgan in RiskMetrics methodology. 

The variability in this model are determined by formula: 

𝑡
2 = (1 − )𝑟𝑡−1

2 + 𝑡−1
2 ,                                  (16) 

where 0 <  < 1. 

Parameter  is not estimated, but it is taken at the level of 0.94 for the daily data, and at the level of 

0.97 for monthly data. It determines the ease use of this method in practice. In fact EWMA model 

belongs to the family of GARCH models called IGARCH (1,1).  

Conditional EVT (GARCH-EVT) model is a concept of McNeil and Frey (2000) to VaR modeling 

by extending the EVT framework to dependent time-series. In this model, we fit the GP distribution 

parameters to standardized residuals 𝑒𝑡 of GARCH model and then calculate VaR for short position 

as follows: 

𝑉𝑎𝑅1−𝛼 = 𝑡(1)𝑉𝑎𝑅1−𝛼(𝑒𝑡),                                (17) 

where: 𝑡(1) is one step ahead forecast of conditional standard deviation in GARCH model and 

𝑉𝑎𝑅1−𝛼(𝑒𝑡) is calculated from (11) but for the standardized residuals 𝑒𝑡 of GARCH model. 

3. Backtesting Methods 

Backtesting procedure performs the comparison of Value at Risk estimations to actual losses of 

the considered assets. The accuracy of the model is assessed here on the basis of the number of returns 

exceeding VaR. Calculating the VaR at a tolerance level , it is required, that the percentage of the 

VaR exceeded by empirical returns to the all ones in the sample would equal to . If exceedances' 

percentage is higher than assumed, this model underestimates the risk, otherwise the VaR model is 

too conservative, and the actual risk is lower than the model shows. The most used backtesting tool is 

the Kupiec's test (Kupiec 1995) known as the proportion of failures test. This test verifies if the actual 

number of VaR exceedances is equal to . The test statistic is defined as follows: 

𝐿𝑅_𝑈𝐶 = 2(𝑙𝑜𝑔 ((
𝑇1

𝑇0+𝑇1
)
𝑇1
(1 −

𝑇1

𝑇0+𝑇1
)
𝑇0
) − 𝑙𝑜𝑔(𝑇1(1 − )𝑇0)),              (18) 

where: 𝑇1– the number of VaR exceedances, 𝑇0– the number of unexceeded VaR. Under the true null 

hypothesis 𝐿𝑅_𝑈𝐶⁡~⁡𝜒2(1).  



Christoffersen's test (Christoffersen 1998) is more sophisticated statistical test and aside from the 

number of exceptions additionally checks independence of VaR exceedances. More precisely it 

verifies if the current exception is independent on the exception appearance on the previous day. The 

test statistic is defined as follows: 

𝐿𝑅_𝐶𝐶 = 2𝑙𝑜𝑔 ((
𝑇01

𝑇01+𝑇00
)
𝑇01

(1 −
𝑇01

𝑇01+𝑇00
)
𝑇00

(
𝑇11

𝑇10+𝑇11
)
𝑇11

(1 −
𝑇11

𝑇10+𝑇11
)
𝑇10
) +  

−2𝑙𝑜𝑔(𝑇01+𝑇11(1 − )𝑇00+𝑇10),                              (19) 

where: 𝑇𝑖𝑗  – the number of days when exception 𝑗 occurred assuming that exception 𝑖 occurred on 

the previous day (1 if violation occurs, 0 if no violation occurs). Under the true null hypothesis 

𝐿𝑅_𝐶𝐶⁡~⁡𝜒2(2). 

The Christoffersen and Pelletier's test analyses if the number of days between exceedances is 

independent over time (Christoffersen and Pelletier 2004). Under the null hypothesis the duration of 

time between VaR violations should have no memory and mean duration of 1/. The test is based on 

the Weibull distribution, which is the memory free distribution. Here the Weibull distribution with 

parameter 𝑏 = 1 is used. The distribution is of the form: 

𝑓(𝑑) = 𝑎𝑏𝑏𝑑𝑏−1𝑒𝑥𝑝{−(𝑎𝑑)𝑏},                                 (20) 

where 𝑑  is the number of days between two violations of VaR. Under the null hypothesis of 

independence the likelihood is as follows: 

𝐿() = ∏ (⁡𝑒𝑥𝑝(−⁡𝑑𝑡))
𝑇1−1
𝑡=1 ,                                 (21) 

where 𝑇1 is the number of days in which a violation is occurred. The likelihood ratio test statistic is 

thus: 

𝐿𝑅_𝑈𝐷 = 2(𝑙𝑜𝑔𝐿(𝑎̂) − 𝑙𝑜𝑔𝐿()).                             (22) 

Under the true null hypothesis 𝐿𝑅_𝑈𝐷⁡~⁡𝜒2(1). We refer to (Christoffersen and Pelletier 2004) for 

details of the test.  

The loss function is a goodness-of-fit measure for VaR calculation. The loss function for a given 

𝛼 is defined as follows (Gonzales-Rivera et al. 2004): 

𝑄 = 𝑃−1∑ ( − 𝐼𝑡+1(𝛼))(𝑟𝑡+1 + 𝑉𝑎𝑅(𝑟𝑡))⁡
𝑇
𝑡=𝑅 ,                    (23) 

where: 𝐼𝑡+1(𝛼) = 1 for 𝑟𝑡+1 < −𝑉𝑎𝑅𝛼(𝑟𝑡) and 𝐼𝑡+1(𝛼) = 0 otherwise, 𝑃 – the prediction period, 𝑅 – 

the estimation period. A lower 𝑄 value means a better goodness of fit. 

4. Results and Discussion 

To test the forecasting performance of examined VaR models we selected 4 currencies, 5 stock 

indices and 4 commodities: USD/EUR, USD/GBP, USD/JPY, USD/PLN, S&P500 (SPX), FTSE100 

(UKX), NIKKEI225 (NKX), ATHEX COMP (ATX), WIG20, GOLD (GC.F), SILVER (SI.F), CRUDE OIL 

(CL.F), NATURAL GAS (NG.F). The data comprises of daily price levels of the chosen assets from the 

beginning of 2000 up to 30th June, 2019. The data set was obtained from the financial stock news 

website (stooq.pl). We use log-returns (as a percentage) in our calculations. We examine the VaR 

forecasts at two significance levels, i.e. 1% and 5% for both the long and the short investor position. 

For the sake of brevity we present the results only for 5% VaR in the tables 1–8. Results for 1% VaR are 

available from the authors on the request. For all considered models, we allow the model parameters 

to change over time. Using rolling windows of size 500 we daily update the model parameters 

estimates and calculate VaR forecasts for the next trading day. We calculate VaRs using the following 

unconditional models: Gaussian distribution (NORM), stable distribution (STAB), Normal Inverse 

Gaussian distribution (NIG) and Generalized Pareto distribution (GP) assuming arbitrary threshold 

level of 90% (i.e. the largest 10% of positive and negative returns are considered as the extreme 

observations). We also use conditional models like: EWMA, GARCH with Gaussian 

(GARCH-NORM) and Student's t (GARCH-t) innovations and McNail and Frey GARCH-EVT model 

with Gaussian innovations – assuming the threshold in the same way as in the unconditional model. 



Echaust (2018) and Echaust and Just (2020) considered GARCH-EVT model with optimal tail selection 

and updated the optimal tail fraction for each moving window of observations. They did not find the 

improvement of VaR forecasts accuracy with reference to a constant threshold approach. In order to 

verify the effectiveness of examined models, the expected (ET) and the actual (T1) number of VaR 

exceedances are determined and Kupiec's, Christoffersen's and Christoffersen and Pelletier's tests are 

applied to verify a correctness of models. Additionally, the tests are supplemented by the loss 

function.  

Assessing the quality of the estimated VaRs for the analyzed assets, based on the Kupiec's test it 

can be concluded that the worst results are obtained for the unconditional model with a normal 

distribution. Especially for 1% VaR the Gaussian distribution has too thin tails and too many 

exceedances of VaR appear. Such a situation takes place in 11 out of 13 analyzed assets for both left 

and right tails (significance level of 5%). It is possible to get an improvement of the results using NIG 

or GP distributions, which allow to capture the fat tails property of the empirical distribution. They 

measure the number of exceedances very accurately for 5% VaR but for 1% VaR the models fail in 4–5 

out of 13 cases. In these cases, the number of VaR's exceedances, estimated by using unconditional 

models, exceeds the acceptable level. It means, that VaRs determined by using these methods are 

underestimated. Since it is not possible to estimate the stable distribution parameters for each 

window of observation, therefore these results are placed in the table 8 only for two assets i.e. SPX 

and SI.F. As is typical for this distribution, unlike the other unconditional models, this model 

overestimates the high quantiles (1% and 99% here). The accuracy of conditional models vary 

depending on the type of model which is used to measure the VaR. EWMA model produces VaR 

forecasts seriously inaccurate and the number of exceedances is much higher than the expected level. 

For the tolerance level of 1% the model generates the worst VaR forecasts between all considered 

models (except the unconditional model with a normal distribution). The GARCH models perform 

much better, but surprisingly they both are outperformed by unconditional NIG and GP distributions 

for 5% VaR. The improvement of the quality of VaR estimations is achieved for the GARCH-EVT 

model. This is only one model that produces accurate VaR forecasts for both significance levels and 

for all considered assets. 

The Christoffersen's and Christoffersen-Pelletier's tests focus on independence of VaR 

exceedances instead of their number only. Since unconditional models do not account for volatility 

clustering none of them is able to produce i.i.d. VaR violations. In almost all considered cases, we 

reject the null hypothesis, which states that the VaR exceedances are independent over time. The 

exception is the Christoffersen's test which fails to reject independence in some cases for each 

distribution. The NIG and GP distributions perform the best between unconditional models and they 

seem to be good models in 4 out of 13 for left tail and in 6 out of 13 cases for 5% VaR, and in half of 

cases for 1% VaR. Conditional models perform significantly better. The volatility models, GARCH 

and GARCH-EVT, in most of the analyzed cases, can capture stylized facts about financial time series 

like volatility clustering and leptokurtosis, as well as the skewness of the distribution (GARCH-EVT). 

The worst model is EWMA which fails in almost half of the cases. The GARCH-EVT model occurs to 

be the most preferable for both considered tolerance levels and for both the right and the left tails. For 

this model the Christoffersen's test rejects the null hypothesis only once for the left and the right tail in 

the 5% VaR case and twice for the left tail in the 1% VaR case. The Christoffersen-Pelletier's test 

indicates the dependence of the number of days between following exceedances two times for the left 

tail and five times for the right one in the 5% VaR case, and only once for the left tail in the 1% VaR 

case. 

Loss function achieves approximately the same values for all conditional models and the same 

for all unconditional models. However, the values obtained from conditional methods are lower than 

those from unconditional models, implying that they offer higher accuracy than unconditional 

models. 

 

 

 

 



Table 1. Backtesting VaR estimation under normal distribution. 

NORM Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

USD/EUR 227 207 2.07 9.03* 16.25** 0.066 219 0.37 6.58* 36.08** 0.068 

USD/GBP 227 214 0.87 4.20 17.83** 0.061 232 0.09 12.82** 25.88** 0.068 

USD/JPY 227 209 1.69 8.28* 32.65** 0.073 199 4.01* 7.05* 11.65** 0.068 

USD/PLN 225 190 6.15* 16.46** 27.02** 0.09 240 0.98 22.56** 42.12** 0.098 

SPX 220 248 3.58 29.81** 93.12** 0.143 192 3.94* 10.06** 70.86** 0.128 

UKX 221 219 0.02 26.50** 81.23** 0.137 196 3.14 10.11** 58.02** 0.129 

NKX 214 206 0.32 10.98** 61.20** 0.18 165 12.80** 15.85** 39.77** 0.156 

ATH 216 197 1.88 23.94** 59.30** 0.21 166 13.36** 19.22** 31.39** 0.197 

WIG20 218 211 0.31 35.06** 53.08** 0.162 205 0.96 2.20 15.03** 0.151 

GC.F 222 233 0.56 7.76* 8.84** 0.134 190 5.12* 5.79 7.17** 0.117 

SI.F 222 221 0.01 11.38** 6.41* 0.241 188 5.80* 5.80 18.97** 0.198 

CL.F 222 240 1.48 11.57** 44.42** 0.261 213 0.40 7.20* 39.95** 0.241 

NG.F 222 159 20.83** 23.73** 33.81** 0.34 191 4.79* 7.41* 43.65** 0.381 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

 

Table 2. Backtesting VaR estimation under NIG distribution. 

NIG   Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

USD/EUR 227 218 0.45 5.53 13.02** 0.067 224 0.07 5.44 34.05** 0.067 

USD/GBP 227 245 1.37 3.92 14.47** 0.061 237 0.40 11.87** 20.97** 0.068 

USD/JPY 227 233 0.12 6.53* 27.10** 0.073 223 0.11 5.64 19.76** 0.068 

USD/PLN 225 224 0.01 14.61** 23.85** 0.091 237 0.62 19.09** 41.92** 0.098 

SPX 220 246 3.10 32.42** 96.40** 0.142 237 1.33 6.41* 86.95** 0.129 

UKX 221 225 0.07 28.96** 74.77** 0.136 224 0.04 6.14* 54.62** 0.129 

NKX 214 208 0.18 10.36** 59.57** 0.18 197 1.47 7.67* 35.14** 0.155 

ATH 216 204 0.76 30.09** 55.77** 0.208 200 1.33 15.75** 24.50** 0.196 

WIG20 218 212 0.24 34.51** 53.67** 0.162 234 1.07 1.62 11.13** 0.152 

GC.F 222 230 0.29 3.33 7.10** 0.133 226 0.07 1.38 6.02* 0.117 

SI.F 222 222 0.00 14.73** 5.69* 0.241 243 2.01 2.25 12.23** 0.196 

CL.F 222 238 1.17 11.72** 47.63** 0.26 235 0.78 12.05** 38.56** 0.242 

NG.F 222 205 1.41 3.52 24.90** 0.335 203 1.77 5.08 37.88** 0.381 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

 

 

 

 

 



Table 3. Backtesting VaR estimation under GP distribution. 

GP Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

USD/EUR 227 210 1.51 7.92* 14.53** 0.067 215 0.78 5.09 36.27** 0.068 

USD/GBP 227 236 0.32 0.97 10.88** 0.061 230 0.03 15.12** 26.17** 0.068 

USD/JPY 227 230 0.02 6.97* 19.97** 0.072 232 0.08 3.23 15.29** 0.068 

USD/PLN 225 220 0.14 15.90** 29.76** 0.091 233 0.27 12.46** 38.01** 0.097 

SPX 220 225 0.11 33.86** 102.02** 0.142 228 0.30 6.90* 82.63** 0.129 

UKX 221 223 0.02 27.29** 80.46** 0.137 220 0.01 8.28* 55.97** 0.130 

NKX 214 218 0.08 5.32 42.84** 0.179 202 0.73 7.45* 37.97** 0.155 

ATH 216 205 0.64 26.97** 61.09** 0.208 209 0.27 18.14** 30.61** 0.197 

WIG20 218 219 0.00 36.36** 51.94** 0.163 211 0.31 1.14 15.12** 0.153 

GC.F 222 221 0.01 4.22 7.78** 0.133 225 0.04 0.24 7.67** 0.116 

SI.F 222 226 0.07 17.51** 7.02** 0.241 235 0.78 0.99 12.86** 0.197 

CL.F 222 237 1.03 10.28** 41.57** 0.259 232 0.46 7.86* 32.11** 0.241 

NG.F 222 221 0.01 0.85 22.49** 0.336 215 0.24 3.13 43.10** 0.380 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

 

Table 4. Backtesting VaR estimation under EWMA model. 

EWMA  Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

USD/EUR 227 262 5.15* 5.21 8.13** 0.062 250 2.20 2.34 1.67 0.062 

USD/GBP 227 239 0.59 1.21 5.42* 0.058 263 5.53* 6.32* 3.59 0.062 

USD/JPY 227 234 0.17 0.26 0.12 0.068 218 0.45 1.13 3.61 0.065 

USD/PLN 225 224 0.01 0.77 4.57* 0.082 264 6.63* 12.34** 0.02 0.089 

SPX 220 246 3.10 3.22 0.99 0.12 226 0.17 5.37 13.38** 0.103 

UKX 221 277 13.77** 26.89** 0.35 0.118 219 0.02 8.60* 16.84** 0.104 

NKX 214 248 5.41* 5.61 1.24 0.161 221 0.24 2.92 2.74 0.136 

ATH 216 248 4.66* 21.97** 9.71** 0.192 217 0.00 2.86 1.10 0.182 

WIG20 218 233 0.93 5.40 4.93* 0.149 242 2.47 2.48 16.20** 0.142 

GC.F 222 248 3.07 3.36 4.12* 0.126 219 0.05 6.15* 13.73** 0.112 

SI.F 222 258 5.82* 6.11* 6.60* 0.226 205 1.42 4.17 0.49 0.186 

CL.F 222 258 5.82* 8.27* 0.01 0.234 216 0.18 5.88 16.12** 0.21 

NG.F 222 218 0.08 0.90 2.49 0.312 268 9.42** 10.17** 5.05* 0.364 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

 

 

 

 

 



Table 5. Backtesting VaR estimation under GARCH model with Gaussian innovations. 

GARCH -NORM  Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

USD/EUR 227 216 0.66 0.72 2.38 0.062 208 1.87 2.12 0.57 0.063 

USD/GBP 227 215 0.75 1.29 2.11 0.058 243 1.07 1.07 0.49 0.062 

USD/JPY 227 211 1.34 1.72 0.06 0.069 196 4.91* 6.68* 5.46* 0.065 

USD/PLN 225 189 6.52* 6.52* 1.48 0.082 237 0.62 2.29 0.03 0.089 

SPX 220 239 1.66 1.66 0.01 0.119 205 1.12 3.96 14.09** 0.103 

UKX 221 252 4.33* 5.30 0.83 0.118 194 3.67 11.36** 13.56** 0.103 

NKX 214 229 1.08 1.22 0.52 0.16 184 4.65* 4.65 2.55 0.134 

ATH 216 203 0.89 7.62* 4.73* 0.19 191 3.25 4.10 1.31 0.182 

WIG20 218 203 1.25 6.79* 6.09* 0.149 226 0.24 1.63 10.00** 0.142 

GC.F 222 219 0.05 1.72 3.31 0.125 199 2.62 6.30* 1.63 0.112 

SI.F 222 237 1.03 3.30 1.62 0.229 181 8.52** 12.10** 0.01 0.187 

CL.F 222 231 0.37 0.37 0.29 0.234 185 6.90** 7.34* 6.21* 0.211 

NG.F 222 187 6.14* 6.67* 2.03 0.313 235 0.78 1.35 2.31 0.363 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

 

Table 6. Backtesting VaR estimation under GARCH model with Student's t innovations. 

GARCH-t  Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

USD/EUR 227 225 0.04 0.38 1.90 0.062 205 2.49 2.50 0.11 0.063 

USD/GBP 227 219 0.35 0.61 1.18 0.058 238 0.49 0.70 0.05 0.062 

USD/JPY 227 224 0.07 0.18 0.20 0.068 208 1.87 3.48 2.85 0.065 

USD/PLN 225 199 3.37 3.55 0.92 0.082 244 1.58 5.01 0.10 0.089 

SPX 220 247 3.34 3.40 0.29 0.119 212 0.32 3.87 17.65** 0.103 

UKX 221 254 4.90* 5.74 1.16 0.118 202 1.81 10.69** 14.12** 0.103 

NKX 214 232 1.54 1.77 1.31 0.161 188 3.47 3.85 2.23 0.134 

ATH 216 219 0.03 6.60* 3.21 0.19 196 2.08 7.70* 1.97 0.181 

WIG20 218 210 0.39 10.64** 7.11** 0.15 238 1.70 3.15 13.80** 0.141 

GC.F 222 239 1.32 2.09 3.01 0.125 220 0.02 6.26* 4.30* 0.111 

SI.F 222 259 6.14* 9.30** 2.90 0.228 209 0.83 2.72 0.43 0.185 

CL.F 222 235 0.78 0.99 0.18 0.234 187 6.16* 6.68* 4.97* 0.211 

NG.F 222 203 1.77 3.21 0.19 0.313 251 3.82 4.22 2.05 0.362 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

 

 

 

 

 



Table 7. Backtesting VaR estimation under GARCH-EVT model. 

GARCH-EVT  Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

USD/EUR 227 209 1.69 1.91 0.88 0.062 218 0.45 0.68 1.12 0.063 

USD/GBP 227 228 0.00 1.26 4.71* 0.058 221 0.20 0.21 0.30 0.062 

USD/JPY 227 228 0.00 0.60 0.03 0.069 220 0.29 2.89 3.75 0.065 

USD/PLN 225 210 1.13 2.19 0.23 0.082 226 0.00 0.65 0.04 0.089 

SPX 220 223 0.04 0.71 0.21 0.119 217 0.05 4.16 12.44** 0.104 

UKX 221 226 0.11 1.83 0.34 0.119 234 0.77 11.83** 17.08** 0.104 

NKX 214 220 0.17 0.73 1.19 0.16 205 0.41 0.49 4.13* 0.134 

ATH 216 210 0.20 8.55* 2.28 0.19 222 0.15 0.75 3.11 0.182 

WIG20 218 224 0.12 4.81 4.13* 0.15 220 0.01 1.84 20.65** 0.142 

GC.F 222 222 0.00 3.07 3.72 0.126 217 0.12 4.12 3.07 0.111 

SI.F 222 224 0.02 1.96 1.64 0.229 214 0.32 5.76 0.95 0.188 

CL.F 222 227 0.11 0.29 0.19 0.234 210 0.71 1.15 5.43* 0.211 

NG.F 222 220 0.02 0.41 1.04 0.312 229 0.23 1.03 2.62 0.365 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

 

Table 8. Backtesting VaR estimation under stable distribution. 

STAB  Lower tail, VaR 0.05 Upper tail, VaR 0.95 

Asset ET T1 UC CC UD Loss T1 UC CC UD Loss 

SPX 220 229 0.37 29.78** 104.63** 0.142 237 1.33 8.93** 81.71** 0.130 

SI.F 222 227 0.11 19.28** 8.56** 0.242 238 1.17 1.18 11.13** 0.197 

Note: ET (T1) – expected (actual) number of VaR violations, UC – Kupiec's test statistic, CC – Christoffersen's test 

statistic, UD – Christoffersen and Pelletier's test statistic, Loss – loss function Q described as in Gonzalez-Rivera 

et al. (2004), p-value<0.01 (**), 0.01<p-value<0.05 (*). 

5. Conclusions 

The aim of this paper has been to evaluate how well unconditional and conditional models 

perform in estimating and forecasting a VaR measure. We employ four unconditional models i.e. 

Gaussian, NIG, GP, and stable distributions and four conditional models i.e. EWMA, GARCH with 

Gaussian and Student's t innovations and GARCH-EVT models. Definitely worse VaR estimations are 

obtained for unconditional models, and especially poor for the Gaussian distribution. An 

improvement of VaR accuracy is obtained for VaR calculated from NIG and GP distributions, which 

can better model extreme returns. However, these estimations are still not good. We have shown that 

unconditional models usually underestimate the VaR for a small tolerance VaR level (1%). Even if 

they provide the VaR estimates, for which the number of their exceedances by the empirical returns is 

in line with the assumed level, the exceedances are not independent over time. They provide the 

stable estimates of model parameters and do not update quickly when the volatility changes. The 

majority of VaR exceedances occurred during periods of high volatility, when VaR values were 

estimated based on periods of low volatility. However, in periods of low volatility, they occurred after 

periods of high volatility and the VaRs have not been exceeded. Conditional models are deprived of 

this defect. The clustering of returns volatility is well captured by conditional models like GARCH-t 

and GARCH-EVT. Especially the latter model should be distinguished because of good VaR 

estimations regardless of considered assets, the level of tolerance and investor position (long and 

short).  



The presented results concern the verification of VaR models in a very short, one-day time 

horizon. When we analyze the accuracy of VaR forecasts in a longer period of time e.g. 10 days, these 

results may differ significantly from those ones presented in this work. This problem will be 

considered in the authors' future work. 
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