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Abstract. The Kalman filter is one of the classical algorithms of the statistical 

estimation theory. The filter is applied in a lot of fields. One of them is 

econometrics, especially its sphere of econometric models in which there is at 

least one variable which cannot be directly observed and measured. The paper 

presents the basic features of the Kalman filter and its application in time series 

analysis. The text specifically focuses on possibilities of transformations of 

ARMA models into state-space form, and the following application of the 

Kalman filter in solving problems of prediction, filtering and smoothing. 

Another issue which is focused on is an application of the Kalman filter in 

estimating of unknown parameters of time series models. The presented 

procedures are demonstrated on practical problems which are implemented in 

the MATLAB environment; the outputs are presented in the text. 
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1 Introduction 

Numerous models of dynamic systems are designed in the theory of economics [22, 5, 

13]. And in the process of applying these models, there are frequent cases of 

situations when one of the model variables (the system state) is not directly 

observable, is latent. In such a case it is possible to use the Kalman filter.  

The Kalman filter is considered to be a theoretical basis for various recursive 

methods applied in stochastic (linear) dynamic systems. The algorithm is based on the 

idea that an unknown state of the system can be estimated using certain measured data 

(usually in the form of a time series).  The algorithm was named after Rudolf Emil 

Kalman, a Hungarian mathematician living in the USA, who presented it in 1960 in 

the text referred to below under [11]. During the course of time, other authors derived 

other algorithms based on the principle of the Kalman filter, these algorithms are 

generally referred to as Kalman filters, and they can be conveniently applied in 

specific situations of solving practical problems in which, for example, some of the 

theoretical assumptions of the classical Kalman filter are not met. 

The Kalman filter can be applied in varied domains of the prevailingly technical 

character, as for example in case of localization of moving objects and navigation –   

the Kalman filter or Kalman filters in general are used in global navigation satellite 

systems (GPS, etc.), in radars, in case of navigation and controlling of robots, in 

autopilots or autonomous vehicles, in computer vision for tracking objects in videos, 



 

 

in augmented and virtual reality, etc. Their application in the sphere of econometrics 

cannot be ignored [9, 16, 21, 3]; analysis of economic time series can be mentioned 

here as a related example [14, 20]. The main goal of the paper is to present the basic 

features of the Kalman filter and focus on its application in time series analysis.  

2 Kalman Filter 

The Kalman filter is a tool which enables to estimate the state of a stochastic linear 

dynamic system using measurements corrupted by noise. The estimate produced by 

the Kalman filter is statistically optimal in some sense (for example when considering 

the minimization of the mean square error; see [12] for details). The principle of 

application of the filter is illustrated in Fig. Fig.  1. 

 

Fig.  1. Scheme of applying Kalman filter. Based on [12]. 



 

 

The Kalman filter works with all available information, i.e. all the available 

measurements, the knowledge of the system model and the statistical description of its 

inaccuracies, noise and errors, and the information about the initial conditions are 

used when the system state is being estimated. 

2.1 Algorithm of Kalman Filter 

Let us consider a stochastic linear dynamic system in discrete time, which is 

represented by the following state-space model (it is assumed here that the system has 

no inputs) 

 𝒙𝑘 = 𝜱𝑘−1𝒙𝑘−1 + 𝑮𝑘−1𝒘𝑘−1, (1) 

 𝒛𝑘 = 𝑯𝑘𝒙𝑘 + 𝒗𝑘. (2) 

The equation (1) referred to as the state equation, describes the dynamics of the 

system, the vector 𝒙𝑘 ∈ ℝ
𝑛 is an (unknown) vector of the system state at the time 𝑡𝑘, 

the matrix 𝜱𝑘−1 ∈ ℝ
𝑛×𝑛 represents the system state transition between the time 𝑡𝑘−1 

and 𝑡𝑘. The equation (2) is called the measurement equation, the vector 𝒛𝑘 ∈ ℝ
𝑚 is 

called the system output vector, the measurement vector or the observation vector, the 

matrix 𝑯𝑘 ∈ ℝ
𝑚×𝑛 describes the relation between the system state and the 

measurements. Since a stochastic system is concerned, the vectors 𝒙𝑘 and 𝒛𝑘, 𝑘 =
0, 1, 2, …, can be considered as random variables, and their sequences {𝒙𝑘} and {𝒛𝑘} 
are then random (stochastic) processes. 

{𝒘𝑘} and {𝒗𝑘} are random noise processes; these processes are assumed to be 

uncorrelated Gaussian processes with zero mean and covariance matrices 𝑸𝑘 ∈ ℝ
𝑙×𝑙 

resp. 𝑹𝑘 ∈ ℝ
𝑚×𝑚 at time 𝑡𝑘 (the processes have qualities of Gaussian white noise). 

Matrix 𝑮𝑘 ∈ ℝ
𝑛×𝑙 then describes the impact of the noise in the state equation of the 

model. 

Furthermore, let us assume that 𝒙0 is a random variable having a Gaussian 

(normal) distribution with known mean 𝒙0 and known covariance matrix 𝑷0. 

Moreover, suppose that 𝒙0 and both the noises are always mutually uncorrelated. 

Then we can summarize that for all 𝑡𝑘  

𝐸〈𝒘𝑘〉 = 𝟎, 

𝐸〈𝒗𝑘〉 = 𝟎, 

𝐸〈𝒘𝑘1𝒘𝑘2
𝑇 〉 = 𝑸𝑘1𝛥(𝑘2 − 𝑘1), 

𝐸〈𝒗𝑘1𝒗𝑘2
𝑇 〉 = 𝑹𝑘1𝛥(𝑘2 − 𝑘1), 

𝐸〈𝒘𝑘1𝒗𝑘2
𝑇 〉 = 𝟎, 

𝐸〈𝒙0𝒘𝑘
𝑇〉 = 𝟎, 

𝐸〈𝒙0𝒗𝑘
𝑇〉 = 𝟎, 



 

 

where the symbol 𝛥 refers to the Kronecker delta 

𝛥(𝑘) = {
 1, 𝑘 = 0,
 0, 𝑘 ≠ 0.

 

The aim of the Kalman filter is to produce an estimate of the state vector 𝒙𝑘 at time 

𝑡𝑘, symbolized as 𝒙𝑘, so that this estimate is optimal (for example with respect to 

minimizing the mean square error). 

The algorithm of the Kalman filter is recursive, the calculation at time 𝑡𝑘 consists 

of two main steps. Firstly, the a priori estimate 𝒙𝑘(−) at time 𝑡𝑘 is computed through 

substituting the a posteriori estimate from time 𝑡𝑘−1 into the deterministic part of the 

state equation of the model; this step is called the prediction step. Then, this estimate 

is improved by using the measurement carried out at time 𝑡𝑘, which results in 

obtaining the a posteriori estimate 𝒙𝑘(+) at time 𝑡𝑘; this is the correction step. 

The following relation can be written to specify the a priori estimate of the state 

vector 𝒙𝑘(−) at time 𝑡𝑘; the uncertainty of this estimate is expressed by the a priori 

error covariance matrix 𝑷𝑘(−) 

𝒙𝑘(−) = 𝜱𝑘−1𝒙𝑘−1(+), 

𝑷𝑘(−) = 𝜱𝑘−1𝑷𝑘−1(+)𝜱𝑘−1
𝑇 + 𝑮𝑘−1𝑸𝑘−1𝑮𝑘−1

𝑇 . 

Then, after obtaining of the measurement 𝒛𝑘, combining of the a priori estimate and 

the difference between the actual value and the predicted value of the measurement  

weighted by the matrix 𝑲𝑘, we come to the a posteriori estimate of the state vector 

𝒙𝑘(+); its uncertainty is expressed by the a posteriori error covariance matrix 𝑷𝑘(+) 

𝒙𝑘(+) = 𝒙𝑘(−) + 𝑲𝑘[𝒛𝑘 −𝑯𝑘𝒙𝑘(−)], 

𝑷𝑘(+) = 𝑷𝑘(−) − 𝑲𝑘𝑯𝑘𝑷𝑘(−), 

𝑲𝑘 = 𝑷𝑘(−)𝑯𝑘
𝑇[𝑯𝑘𝑷𝑘(−)𝑯𝑘

𝑇 + 𝑹𝑘]
−1
. 

A detailed derivation of the given equations of the Kalman filter can be find for 

example in [6], more detailed presentations of the algorithm, its features and its 

theoretical assumptions can be found for example in [6, 12, 17]; practical aspects of 

the implementation of the filter are discussed for example in [17]. 

3 Application of Kalman Filter in Time Series Analysis  

The Kalman filter can be conveniently applied when solving the problems of 

prediction, filtering and smoothing [2, 4, 7, 8]. Prediction is based on the estimation 

of the system state at certain time while using observations measured at times 

preceding the time of the estimation; it can be shortly written as (𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 <
𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛). Filtering is based on the estimation of the system state at certain time 

while using observations measured at that given estimation time and preceding times 



 

 

(𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≤ 𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛). Smoothing is based on the estimation of the system state 

at certain time while using observations measured at times after the time of the 

estimation (𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 > 𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛). 

So called ARMA (autoregressive moving average) models or their other more 

general variants are often used when time series are analyzed. These models, 

however, can be transformed into the form of the state-space model consisting of the 

state equation and the measurement equation; the Kalman filter can be then applied to 

this model. Related to the construction of time series models, the Kalman filter can be 

further involved in calculating the estimates of the unknown parameters of these 

models [7, 8]. 

3.1 Estimation of Parameters of Time Series Models  

For the time being, let us consider merely the autoregressive model AR(𝑝) of the 𝑝 

order 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 , 

where {𝜀𝑡} is an uncorrelated Gaussian process with zero mean and constant variance 

𝜎2, and 𝜙𝑖, 𝑖 = 1, … , 𝑝, are the parameters of the model. (The used symbols are in 

accordance with the established practice of time series models.) 

Now, the aim can be estimating of the model´s parameters. When solving this 

problem, the parameters form the unknown state vector, and the whole state equation 

(supposing that the parameters are constant in time) and the measurement equation 

can be expressed in the following way 

(

𝜙1  𝑡
𝜙2  𝑡
⋮
𝜙𝑝  𝑡

) = (

𝜙1  𝑡−1
𝜙2  𝑡−1
⋮

𝜙𝑝  𝑡−1

), 

𝑦𝑡 = (𝑦𝑡−1 𝑦𝑡−2 … 𝑦𝑡−𝑝)(

𝜙1  𝑡
𝜙2  𝑡
⋮
𝜙𝑝  𝑡

)+ 𝜀𝑡. 

The problem can be illustrated on a simulated AR(2) process  

𝑦𝑡 = 0.7𝑦𝑡−1 + 0.3𝑦𝑡−2 + 𝜀𝑡 ,    𝜀𝑡~𝑁(0, 10),    𝑡 = 1,… , 100, 

whose possible realization is depicted in Fig Fig.  2. 



 

 

 

Fig.  2. Simulated AR(2) process. 

Only the values 𝑦𝑡  are available as the input of the problem, the parameters 𝜙1 and 𝜙2 

are unknown. On the basis of the above given, the state equation and the measurement 

equation were constructed, and the Kalman filter was then applied. The evolution of 

the obtained estimates of the parameters is summarized in Table Table 1. Estimates of 

the parameters of the AR(2) model obtained through Kalman filter. (the initial values 

of the estimates could be chosen arbitrarily). 

Table 1. Estimates of the parameters of the AR(2) model obtained through Kalman filter. 

𝑡 0 10 20 30 40 50 60 70 80 90 100 

𝜙̂1 1.000 0.521 0.458 0.541 0.523 0.553 0.572 0.631 0.680 0.706 0.704 

𝜙̂2 1.000 0.465 0.523 0.465 0.480 0.453 0.437 0.369 0.320 0.295 0.293 

3.2 Prediction, filtering and smoothing of time series 

The issue of solving the already mentioned problems of prediction, filtering and 

smoothing will now be discussed. For these purposes, the already presented AR(𝑝) 

model can be transformed into the form of a state-space model, for example, of the 

following form  

(

 
 

𝑦𝑡
𝑦𝑡−1
⋮

𝑦𝑡−𝑝+2
𝑦𝑡−𝑝+1)

 
 
=

(

 
 

𝜙1 𝜙2 ⋯ 𝜙𝑝−1 𝜙𝑝
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0 )

 
 

(

 
 

𝑦𝑡−1
𝑦𝑡−2
⋮

𝑦𝑡−𝑝+1
𝑦𝑡−𝑝 )

 
 
+

(

 
 

1
0
⋮
0
0)

 
 
𝜀𝑡 , 

𝑦𝑡 = (1 0 ⋯ 0 0)

(

 
 

𝑦𝑡
𝑦𝑡−1
⋮

𝑦𝑡−𝑝+2
𝑦𝑡−𝑝+1)

 
 
. 



 

 

Also a more general ARMA(𝑝, 𝑞) model  

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 . 

can be transformed into the form of the state-space model. That can result, for 

example, in the following state equation and measurement equation [4, 8] 

𝜶𝑡 =

(

 
 

𝜙1 1 0 ⋯ 0
𝜙2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝜙𝑛−1 0 ⋯ 0 1
𝜙𝑛 0 0 ⋯ 0)

 
 
𝜶𝑡−1 +

(

 
 

1
𝜃1
⋮

𝜃𝑛−2
𝜃𝑛−1)

 
 
𝜀𝑡 , 

𝑦𝑡 = (1 0 ⋯ 0 0)𝜶𝑡 , 

where 

𝜶𝑡 = (

𝑦𝑡
𝜙2𝑦𝑡−1 +⋯+ 𝜙𝑛𝑦𝑡−𝑛+1 + 𝜃1𝜀𝑡 +⋯+ 𝜃𝑛−1𝜀𝑡−𝑛+2

⋮
𝜙𝑛𝑦𝑡−1 + 𝜃𝑛−1𝜀𝑡

) ,   𝑛 = 𝑚𝑎𝑥(𝑝, 𝑞 + 1), 

𝜙𝑖 = 0 for 𝑖 > 𝑝, and 𝜃𝑖 = 0 for 𝑖 > 𝑞. 

However, it is necessary to mention the existence of a bigger number of alternative 

state-space models representing the same ARMA model; they differ from each other 

in their definitions of the state vector etc. These varied approaches are summarized in 

[10]. However, the state vectors defined in this way do not generally have a 

substantive interpretation.  

The problem of prediction, filtering and smoothing will be demonstrated on a 

simulated ARMA(2,1) process 

𝑦𝑡 = 0.6𝑦𝑡−1 + 0.2𝑦𝑡−2 + 𝜀𝑡 + 0.1𝜀𝑡−1,    𝜀𝑡~𝑁(0, 10),    𝑡 = 1,… , 100. 

In accordance with the above given, this ARMA model was transformed into the form 

of a state-space model. The problem of filtering was solved through a standard 

application of the algorithm of the Kalman filter (the prediction step and the 

correction step), as it was described in Section 2. The problem of prediction can be 

solved through applying merely the prediction step of the algorithm. This step is not 

followed by the correction step because the observation (measurement) which could 

improve the a priori estimate is not available yet (in the practical illustration, one-step 

ahead predictions were calculated in the observed period, and then predictions for five 

future times were calculated). The problem of smoothing can be solved in various 

ways. Here the application of the algorithm called the Rauch–Tung–Striebel smoother 

was used. In the first (forward) pass, the smoother applies the standard Kalman filter, 

and in the second (backward) pass, it processes recursively from the end, and by 

combining the filtered values, it computes smoothed values [15]. The obtained results 

are summarized in Fig. Fig. 3. 



 

 

 

Fig. 3. Illustration of applying the Kalman filter for prediction, filtering and smoothing of a 

time series represented by ARMA(2,1) model. 

4 Conclusion 

Time series are essentially important in the sphere of dynamic models in economics.  

It is quite frequently necessary to estimate unobservable parameters of time series 

models, which can be done on the basis of observed values of economic variables. 

The paper presented some ways in which the Kalman filter can be used for estimating 

the AR(𝑝) model´s parameters. A model of a simulated AR(2) process was used as a 

practical demonstration of this problem. From the results presented in Table Table 1 it 

is clear that the longer the observed series is, the better the estimates of the parameters 

of the model can be.  Furthermore, using of the Kalman filter for solving problems of 

prediction, filtering and smoothing of time series was mentioned. The paper presented 

possible transformations of the AR(𝑝) models or, more generally, the  ARMA(𝑝, 𝑞) 

models into the state-space model to which the Kalman filter can be applied. A model 

of a simulated ARMA(2,1) process was presented as a practical demonstration. The 

outputs were graphically illustrated in Fig. Fig. 3, and it is clear from them that the 



 

 

results obtained from the application of the Kalman filter are suitable for simulated 

data. 

The application of the Kalman filter in economics is convenient in the sphere of the 

estimation of the output gap of economic units [19, 1, 8], when the estimate of the 

position of the economic unit within the framework of the economic cycle is 

determined. Another convenient application can be in the field of financial 

estimations – to decide whether the currency policy of the given economy is 

restrictive or expansive [18] when determining the short-term or long-term interest 

rate. Our future research will focus on these issues and on mutual comparisons of the 

situation existing in the V4 countries. 

Acknowledgements. Support of the Specific research project of the Faculty of 

Informatics and Management of the University of Hradec Kralove is kindly 

acknowledged. 

References 

1. Beneš, J., N’Diaye, P.: A multivariate filter for measuring potential output and the 

NAIRU: application to the Czech Republic. IMF Working Paper, WP/04/45 (2004). 

2. Brockwell, P. J., Davis, R. A.: Introduction to time series and forecasting. 3rd edn. 

Springer, Cham (2016). 

3. Cipra, T.: Finanční ekonometrie. 2nd edn. Ekopress, Praha (2013). 

4. Durbin, J., Koopman, S. J.: Time series analysis by state space methods. 2nd edn. Oxford 

University Press, Oxford (2012). 

5. Gandolfo, G.: Economics dynamics. 4th edn. Springer, Heidelberg (2009). 

6. Grewal, M. S., Andrews, A. P.: Kalman filtering: theory and practice using MATLAB. 3rd 

edn. Wiley, Hoboken, NJ (2008). 

7. Hamilton, J. D.: Time series analysis. 1st edn. Princeton University Press, Princeton, NJ 

(1994). 

8. Harvey, A. C.: Forecasting, structural time series models and the Kalman filter. 1st edn. 

(Reprinted). Cambridge University Press, Cambridge (1990). 

9. Harvey, A.: Applications of the Kalman filter in econometrics. In: Bewley, T. (eds.) 

Advances in Econometrics: Fifth World Congress, pp. 285–312. Cambridge University 

Press, Cambridge (1987). 

10. Jong, P., Penzer, J.: The ARMA model in state space form. Statistics & Probability Letters, 

70(1), 119–125 (2004). DOI: 10.1016/j.spl.2004.08.006. 

11. Kalman, R. E.: A new approach to linear filtering and prediction problems. Transactions of 

the American Society of Mechanical Engineers, Series D: Journal of Basic Engineering, 

82(1), 35–45 (1960). DOI: 10.1115/1.3662552. 

12. Maybeck, P. S.: Stochastic models, estimation and control, Volume I. 1st edn. Academic 

Press, New York (1979). 

13. Pražák, P., Kovárník, J.: Nonlinear phenomena in Cournot duopoly model. Systems 6(3), 

1–15 (2018). DOI: 10.3390/systems6030030. 

14. Rajan, M. P., Mathew J.: Kalman filter and financial time series analysis. In: Mathew J. et 

al. (eds.) ICECCS 2012, CCIS, vol. 305, pp. 339–351. Springer, Berlin, Heidelberg (2012). 



 

 

15. Rauch, H. E., Striebel, C. T., Tung, F.: Maximum likelihood estimates of linear dynamic 

systems. AIAA Journal, 3(8), 1445–1450 (1965). DOI: 10.2514/3.3166. 

16. Schneider, W.: Analytical uses of Kalman filtering in econometrics - A survey. Statistical 

Papers 29(1), 3–33 (1988). DOI: 10.1007/BF02924508. 

17. Simon, D.: Optimal state estimation: Kalman, H∞ and nonlinear approaches. 1st edn. 

Wiley, Hoboken, NJ (2006). 

18. Slavík, M.: Úvod do moderních přístupů analýzy časových řad: stavově prostorové modely 

a Kalmanův filtr. Politická ekonomie 53(1), (2005). DOI: 10.18267/j.polek.499. 

19. Vlček, J.: Odhad parametrů modelů ve stavovém tvaru. Finance a úvěr 52(5), 275–286 

(2002). 

20. Walker, D. M.: Kalman filtering of time series data. In: Soofi, A. S., Cao, L. (eds.) 

Modelling and forecasting financial data, pp. 137–157. Springer, Boston, MA (2002). 

21. Wilcox, B. A., Hamano, F.: Kalman’s expanding influence in the econometrics discipline. 

IFAC-PapersOnLine 50(1), 637–644 (2017). DOI: 10.1016/j.ifacol.2017.08.106. 

22. Zhang, W.-B.: Discrete dynamical systems, bifurcation and chaos in economics. 1st edn. 

Elsevier, Amsterdam (2006). 


